#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""This module contains Apache Beam operators."""
from __future__ import annotations
import copy
import os
import stat
import tempfile
from abc import ABC, ABCMeta, abstractmethod
from collections.abc import Sequence
from concurrent.futures import ThreadPoolExecutor, as_completed
from contextlib import ExitStack
from functools import partial
from typing import TYPE_CHECKING, Any, Callable
from airflow.configuration import conf
from airflow.exceptions import AirflowException
from airflow.models import BaseOperator
from airflow.providers.apache.beam.hooks.beam import BeamHook, BeamRunnerType
from airflow.providers.apache.beam.triggers.beam import BeamJavaPipelineTrigger, BeamPythonPipelineTrigger
from airflow.providers.google.cloud.hooks.dataflow import (
DataflowHook,
process_line_and_extract_dataflow_job_id_callback,
)
from airflow.providers.google.cloud.hooks.gcs import GCSHook, _parse_gcs_url
from airflow.providers.google.cloud.links.dataflow import DataflowJobLink
from airflow.providers.google.cloud.operators.dataflow import CheckJobRunning, DataflowConfiguration
from airflow.utils.helpers import convert_camel_to_snake, exactly_one
from airflow.version import version
if TYPE_CHECKING:
from airflow.utils.context import Context
[docs]class BeamDataflowMixin(metaclass=ABCMeta):
"""
Helper class to store common, Dataflow specific logic for both.
:class:`~airflow.providers.apache.beam.operators.beam.BeamRunPythonPipelineOperator`,
:class:`~airflow.providers.apache.beam.operators.beam.BeamRunJavaPipelineOperator` and
:class:`~airflow.providers.apache.beam.operators.beam.BeamRunGoPipelineOperator`.
"""
[docs] dataflow_hook: DataflowHook | None
[docs] dataflow_config: DataflowConfiguration
[docs] dataflow_support_impersonation: bool = True
def _set_dataflow(
self,
pipeline_options: dict,
job_name_variable_key: str | None = None,
) -> tuple[str, dict, Callable[[str], None], Callable[[], bool | None]]:
self.dataflow_hook = self.__set_dataflow_hook()
self.dataflow_config.project_id = self.dataflow_config.project_id or self.dataflow_hook.project_id
dataflow_job_name = self.__get_dataflow_job_name()
pipeline_options = self.__get_dataflow_pipeline_options(
pipeline_options, dataflow_job_name, job_name_variable_key
)
process_line_callback = self.__get_dataflow_process_callback()
check_job_status_callback = self.__check_dataflow_job_status_callback()
return dataflow_job_name, pipeline_options, process_line_callback, check_job_status_callback
def __set_dataflow_hook(self) -> DataflowHook:
self.dataflow_hook = DataflowHook(
gcp_conn_id=self.dataflow_config.gcp_conn_id or self.gcp_conn_id,
poll_sleep=self.dataflow_config.poll_sleep,
impersonation_chain=self.dataflow_config.impersonation_chain,
drain_pipeline=self.dataflow_config.drain_pipeline,
cancel_timeout=self.dataflow_config.cancel_timeout,
wait_until_finished=self.dataflow_config.wait_until_finished,
)
return self.dataflow_hook
def __get_dataflow_job_name(self) -> str:
return DataflowHook.build_dataflow_job_name(
self.dataflow_config.job_name, # type: ignore
self.dataflow_config.append_job_name,
)
def __get_dataflow_pipeline_options(
self, pipeline_options: dict, job_name: str, job_name_key: str | None = None
) -> dict:
pipeline_options = copy.deepcopy(pipeline_options)
if job_name_key is not None:
pipeline_options[job_name_key] = job_name
if self.dataflow_config.service_account:
pipeline_options["serviceAccount"] = self.dataflow_config.service_account
if self.dataflow_support_impersonation and self.dataflow_config.impersonation_chain:
if isinstance(self.dataflow_config.impersonation_chain, list):
pipeline_options["impersonateServiceAccount"] = ",".join(
self.dataflow_config.impersonation_chain
)
else:
pipeline_options["impersonateServiceAccount"] = self.dataflow_config.impersonation_chain
pipeline_options["project"] = self.dataflow_config.project_id
pipeline_options["region"] = self.dataflow_config.location
pipeline_options.setdefault("labels", {}).update(
{"airflow-version": "v" + version.replace(".", "-").replace("+", "-")}
)
return pipeline_options
def __get_dataflow_process_callback(self) -> Callable[[str], None]:
def set_current_dataflow_job_id(job_id):
self.dataflow_job_id = job_id
return process_line_and_extract_dataflow_job_id_callback(
on_new_job_id_callback=set_current_dataflow_job_id
)
def __check_dataflow_job_status_callback(self) -> Callable[[], bool | None]:
def check_dataflow_job_status() -> bool | None:
if self.dataflow_job_id and self.dataflow_hook:
return self.dataflow_hook.is_job_done(
location=self.dataflow_config.location,
project_id=self.dataflow_config.project_id,
job_id=self.dataflow_job_id,
)
else:
return None
return check_dataflow_job_status
[docs]class BeamBasePipelineOperator(BaseOperator, BeamDataflowMixin, ABC):
"""
Abstract base class for Beam Pipeline Operators.
:param runner: Runner on which pipeline will be run. By default "DirectRunner" is being used.
Other possible options: DataflowRunner, SparkRunner, FlinkRunner, PortableRunner.
See: :class:`~providers.apache.beam.hooks.beam.BeamRunnerType`
See: https://beam.apache.org/documentation/runners/capability-matrix/
:param default_pipeline_options: Map of default pipeline options.
:param pipeline_options: Map of pipeline options.The key must be a dictionary.
The value can contain different types:
* If the value is None, the single option - ``--key`` (without value) will be added.
* If the value is False, this option will be skipped
* If the value is True, the single option - ``--key`` (without value) will be added.
* If the value is list, the many options will be added for each key.
If the value is ``['A', 'B']`` and the key is ``key`` then the ``--key=A --key=B`` options
will be left
* Other value types will be replaced with the Python textual representation.
When defining labels (labels option), you can also provide a dictionary.
:param gcp_conn_id: Optional.
The connection ID to use connecting to Google Cloud Storage if python file is on GCS.
:param dataflow_config: Dataflow's configuration, used when runner type is set to DataflowRunner,
(optional) defaults to None.
"""
def __init__(
self,
*,
runner: str = "DirectRunner",
default_pipeline_options: dict | None = None,
pipeline_options: dict | None = None,
gcp_conn_id: str = "google_cloud_default",
dataflow_config: DataflowConfiguration | dict | None = None,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.runner = runner
self.default_pipeline_options = default_pipeline_options or {}
self.pipeline_options = pipeline_options or {}
# ``dataflow_config`` type will resolve into the execute method
self.dataflow_config = dataflow_config or {} # type: ignore[assignment]
self.gcp_conn_id = gcp_conn_id
self.beam_hook: BeamHook
self.dataflow_hook: DataflowHook | None = None
self._dataflow_job_id: str | None = None
self._execute_context: Context | None = None
@property
[docs] def dataflow_job_id(self):
return self._dataflow_job_id
@dataflow_job_id.setter
def dataflow_job_id(self, new_value):
if all([new_value, not self._dataflow_job_id, self._execute_context]):
# push job_id as soon as it's ready, to let Sensors work before the job finished
# and job_id pushed as returned value item.
self.xcom_push(context=self._execute_context, key="dataflow_job_id", value=new_value)
self._dataflow_job_id = new_value
def _cast_dataflow_config(self):
if isinstance(self.dataflow_config, dict):
self.dataflow_config = DataflowConfiguration(**self.dataflow_config)
else:
self.dataflow_config = self.dataflow_config or DataflowConfiguration()
if not self.dataflow_config.job_name:
self.dataflow_config.job_name = self.task_id
if self.dataflow_config and self.runner.lower() != BeamRunnerType.DataflowRunner.lower():
self.log.warning(
"dataflow_config is defined but runner is different than DataflowRunner (%s)", self.runner
)
def _init_pipeline_options(
self,
format_pipeline_options: bool = False,
job_name_variable_key: str | None = None,
) -> tuple[bool, str | None, dict, Callable[[str], None] | None, Callable[[], bool | None] | None]:
self.beam_hook = BeamHook(runner=self.runner)
pipeline_options = self.default_pipeline_options.copy()
process_line_callback: Callable[[str], None] | None = None
check_job_status_callback: Callable[[], bool | None] | None = None
is_dataflow = self.runner.lower() == BeamRunnerType.DataflowRunner.lower()
dataflow_job_name: str | None = None
if is_dataflow:
(
dataflow_job_name,
pipeline_options,
process_line_callback,
check_job_status_callback,
) = self._set_dataflow(
pipeline_options=pipeline_options,
job_name_variable_key=job_name_variable_key,
)
self.log.info(pipeline_options)
pipeline_options.update(self.pipeline_options)
if format_pipeline_options:
snake_case_pipeline_options = {
convert_camel_to_snake(key): pipeline_options[key] for key in pipeline_options
}
return (
is_dataflow,
dataflow_job_name,
snake_case_pipeline_options,
process_line_callback,
check_job_status_callback,
)
return (
is_dataflow,
dataflow_job_name,
pipeline_options,
process_line_callback,
check_job_status_callback,
)
[docs] def execute_complete(self, context: Context, event: dict[str, Any]):
"""
Execute when the trigger fires - returns immediately.
Relies on trigger to throw an exception, otherwise it assumes execution was
successful.
"""
if event["status"] == "error":
raise AirflowException(event["message"])
self.log.info(
"%s completed with response %s ",
self.task_id,
event["message"],
)
self.dataflow_job_id = event["dataflow_job_id"]
self.project_id = event["project_id"]
self.location = event["location"]
DataflowJobLink.persist(
self,
context,
self.project_id,
self.location,
self.dataflow_job_id,
)
return {"dataflow_job_id": self.dataflow_job_id}
[docs]class BeamRunPythonPipelineOperator(BeamBasePipelineOperator):
"""
Launch Apache Beam pipelines written in Python.
Note that both ``default_pipeline_options`` and ``pipeline_options``
will be merged to specify pipeline execution parameter, and
``default_pipeline_options`` is expected to save high-level options,
for instances, project and zone information, which apply to all beam
operators in the DAG.
.. seealso::
For more information on how to use this operator, take a look at the guide:
:ref:`howto/operator:BeamRunPythonPipelineOperator`
.. seealso::
For more detail on Apache Beam have a look at the reference:
https://beam.apache.org/documentation/
:param py_file: Reference to the python Apache Beam pipeline file.py, e.g.,
/some/local/file/path/to/your/python/pipeline/file. (templated)
:param py_options: Additional python options, e.g., ["-m", "-v"].
:param py_interpreter: Python version of the beam pipeline.
If None, this defaults to the python3.
To track python versions supported by beam and related
issues check: https://issues.apache.org/jira/browse/BEAM-1251
:param py_requirements: Additional python package(s) to install.
If a value is passed to this parameter, a new virtual environment has been created with
additional packages installed.
You could also install the apache_beam package if it is not installed on your system or you want
to use a different version.
:param py_system_site_packages: Whether to include system_site_packages in your virtualenv.
See virtualenv documentation for more information.
This option is only relevant if the ``py_requirements`` parameter is not None.
:param deferrable: Run operator in the deferrable mode: checks for the state using asynchronous calls.
"""
[docs] template_fields: Sequence[str] = (
"py_file",
"runner",
"pipeline_options",
"default_pipeline_options",
"dataflow_config",
)
[docs] template_fields_renderers = {"dataflow_config": "json", "pipeline_options": "json"}
def __init__(
self,
*,
py_file: str,
runner: str = "DirectRunner",
default_pipeline_options: dict | None = None,
pipeline_options: dict | None = None,
py_interpreter: str = "python3",
py_options: list[str] | None = None,
py_requirements: list[str] | None = None,
py_system_site_packages: bool = False,
gcp_conn_id: str = "google_cloud_default",
dataflow_config: DataflowConfiguration | dict | None = None,
deferrable: bool = conf.getboolean("operators", "default_deferrable", fallback=False),
**kwargs,
) -> None:
super().__init__(
runner=runner,
default_pipeline_options=default_pipeline_options,
pipeline_options=pipeline_options,
gcp_conn_id=gcp_conn_id,
dataflow_config=dataflow_config,
**kwargs,
)
self.py_file = py_file
self.py_options = py_options or []
self.py_interpreter = py_interpreter
self.py_requirements = py_requirements
self.py_system_site_packages = py_system_site_packages
self.deferrable = deferrable
[docs] def execute(self, context: Context):
"""Execute the Apache Beam Python Pipeline."""
self._execute_context = context
self._cast_dataflow_config()
self.pipeline_options.setdefault("labels", {}).update(
{"airflow-version": "v" + version.replace(".", "-").replace("+", "-")}
)
(
self.is_dataflow,
self.dataflow_job_name,
self.snake_case_pipeline_options,
self.process_line_callback,
self.check_job_status_callback,
) = self._init_pipeline_options(format_pipeline_options=True, job_name_variable_key="job_name")
if not self.beam_hook:
raise AirflowException("Beam hook is not defined.")
# Check deferrable parameter passed to the operator
# to determine type of run - asynchronous or synchronous
if self.deferrable:
self.execute_async(context)
else:
return self.execute_sync(context)
[docs] def execute_sync(self, context: Context):
with ExitStack() as exit_stack:
if self.py_file.lower().startswith("gs://"):
gcs_hook = GCSHook(gcp_conn_id=self.gcp_conn_id)
tmp_gcs_file = exit_stack.enter_context(gcs_hook.provide_file(object_url=self.py_file))
self.py_file = tmp_gcs_file.name
if self.snake_case_pipeline_options.get("requirements_file", "").startswith("gs://"):
gcs_hook = GCSHook(gcp_conn_id=self.gcp_conn_id)
tmp_req_file = exit_stack.enter_context(
gcs_hook.provide_file(object_url=self.snake_case_pipeline_options["requirements_file"])
)
self.snake_case_pipeline_options["requirements_file"] = tmp_req_file.name
if self.is_dataflow and self.dataflow_hook:
with self.dataflow_hook.provide_authorized_gcloud():
self.beam_hook.start_python_pipeline(
variables=self.snake_case_pipeline_options,
py_file=self.py_file,
py_options=self.py_options,
py_interpreter=self.py_interpreter,
py_requirements=self.py_requirements,
py_system_site_packages=self.py_system_site_packages,
process_line_callback=self.process_line_callback,
check_job_status_callback=self.check_job_status_callback,
)
DataflowJobLink.persist(
self,
context,
self.dataflow_config.project_id,
self.dataflow_config.location,
self.dataflow_job_id,
)
return {"dataflow_job_id": self.dataflow_job_id}
else:
self.beam_hook.start_python_pipeline(
variables=self.snake_case_pipeline_options,
py_file=self.py_file,
py_options=self.py_options,
py_interpreter=self.py_interpreter,
py_requirements=self.py_requirements,
py_system_site_packages=self.py_system_site_packages,
process_line_callback=self.process_line_callback,
)
[docs] def execute_async(self, context: Context):
if self.is_dataflow and self.dataflow_hook:
with self.dataflow_hook.provide_authorized_gcloud():
self.defer(
trigger=BeamPythonPipelineTrigger(
variables=self.snake_case_pipeline_options,
py_file=self.py_file,
py_options=self.py_options,
py_interpreter=self.py_interpreter,
py_requirements=self.py_requirements,
py_system_site_packages=self.py_system_site_packages,
runner=self.runner,
gcp_conn_id=self.gcp_conn_id,
project_id=self.dataflow_config.project_id,
location=self.dataflow_config.location,
),
method_name="execute_complete",
)
else:
self.defer(
trigger=BeamPythonPipelineTrigger(
variables=self.snake_case_pipeline_options,
py_file=self.py_file,
py_options=self.py_options,
py_interpreter=self.py_interpreter,
py_requirements=self.py_requirements,
py_system_site_packages=self.py_system_site_packages,
runner=self.runner,
gcp_conn_id=self.gcp_conn_id,
),
method_name="execute_complete",
)
[docs] def on_kill(self) -> None:
if self.dataflow_hook and self.dataflow_job_id:
self.log.info("Dataflow job with id: `%s` was requested to be cancelled.", self.dataflow_job_id)
self.dataflow_hook.cancel_job(
job_id=self.dataflow_job_id,
project_id=self.dataflow_config.project_id,
location=self.dataflow_config.location,
)
[docs]class BeamRunJavaPipelineOperator(BeamBasePipelineOperator):
"""
Launching Apache Beam pipelines written in Java.
Note that both
``default_pipeline_options`` and ``pipeline_options`` will be merged to specify pipeline
execution parameter, and ``default_pipeline_options`` is expected to save
high-level pipeline_options, for instances, project and zone information, which
apply to all Apache Beam operators in the DAG.
.. seealso::
For more information on how to use this operator, take a look at the guide:
:ref:`howto/operator:BeamRunJavaPipelineOperator`
.. seealso::
For more detail on Apache Beam have a look at the reference:
https://beam.apache.org/documentation/
You need to pass the path to your jar file as a file reference with the ``jar``
parameter, the jar needs to be a self executing jar (see documentation here:
https://beam.apache.org/documentation/runners/dataflow/#self-executing-jar).
Use ``pipeline_options`` to pass on pipeline_options to your job.
:param jar: The reference to a self executing Apache Beam jar (templated).
:param job_class: The name of the Apache Beam pipeline class to be executed, it
is often not the main class configured in the pipeline jar file.
"""
[docs] template_fields: Sequence[str] = (
"jar",
"runner",
"job_class",
"pipeline_options",
"default_pipeline_options",
"dataflow_config",
)
[docs] template_fields_renderers = {"dataflow_config": "json", "pipeline_options": "json"}
def __init__(
self,
*,
jar: str,
runner: str = "DirectRunner",
job_class: str | None = None,
default_pipeline_options: dict | None = None,
pipeline_options: dict | None = None,
gcp_conn_id: str = "google_cloud_default",
dataflow_config: DataflowConfiguration | dict | None = None,
deferrable: bool = conf.getboolean("operators", "default_deferrable", fallback=False),
**kwargs,
) -> None:
super().__init__(
runner=runner,
default_pipeline_options=default_pipeline_options,
pipeline_options=pipeline_options,
gcp_conn_id=gcp_conn_id,
dataflow_config=dataflow_config,
**kwargs,
)
self.jar = jar
self.job_class = job_class
self.deferrable = deferrable
[docs] def execute(self, context: Context):
"""Execute the Apache Beam Python Pipeline."""
self._execute_context = context
self._cast_dataflow_config()
(
self.is_dataflow,
self.dataflow_job_name,
self.pipeline_options,
self.process_line_callback,
_,
) = self._init_pipeline_options()
if not self.beam_hook:
raise AirflowException("Beam hook is not defined.")
if self.deferrable:
self.execute_async(context)
else:
return self.execute_sync(context)
[docs] def execute_sync(self, context: Context):
"""Execute the Apache Beam Pipeline."""
with ExitStack() as exit_stack:
if self.jar.lower().startswith("gs://"):
gcs_hook = GCSHook(self.gcp_conn_id)
tmp_gcs_file = exit_stack.enter_context(gcs_hook.provide_file(object_url=self.jar))
self.jar = tmp_gcs_file.name
if self.is_dataflow and self.dataflow_hook:
is_running = self.dataflow_config.check_if_running == CheckJobRunning.WaitForRun
while is_running and self.dataflow_config.check_if_running == CheckJobRunning.WaitForRun:
# The reason for disable=no-value-for-parameter is that project_id parameter is
# required but here is not passed, moreover it cannot be passed here.
# This method is wrapped by @_fallback_to_project_id_from_variables decorator which
# fallback project_id value from variables and raise error if project_id is
# defined both in variables and as parameter (here is already defined in variables)
is_running = self.dataflow_hook.is_job_dataflow_running(
name=self.dataflow_config.job_name,
variables=self.pipeline_options,
location=self.dataflow_config.location,
)
if not is_running:
self.pipeline_options["jobName"] = self.dataflow_job_name
with self.dataflow_hook.provide_authorized_gcloud():
self.beam_hook.start_java_pipeline(
variables=self.pipeline_options,
jar=self.jar,
job_class=self.job_class,
process_line_callback=self.process_line_callback,
)
if self.dataflow_job_name and self.dataflow_config.location:
multiple_jobs = self.dataflow_config.multiple_jobs or False
DataflowJobLink.persist(
self,
context,
self.dataflow_config.project_id,
self.dataflow_config.location,
self.dataflow_job_id,
)
self.dataflow_hook.wait_for_done(
job_name=self.dataflow_job_name,
location=self.dataflow_config.location,
job_id=self.dataflow_job_id,
multiple_jobs=multiple_jobs,
project_id=self.dataflow_config.project_id,
)
return {"dataflow_job_id": self.dataflow_job_id}
else:
self.beam_hook.start_java_pipeline(
variables=self.pipeline_options,
jar=self.jar,
job_class=self.job_class,
process_line_callback=self.process_line_callback,
)
[docs] def execute_async(self, context: Context):
if self.is_dataflow and self.dataflow_hook:
with self.dataflow_hook.provide_authorized_gcloud():
self.pipeline_options["jobName"] = self.dataflow_job_name
self.defer(
trigger=BeamJavaPipelineTrigger(
variables=self.pipeline_options,
jar=self.jar,
job_class=self.job_class,
runner=self.runner,
check_if_running=self.dataflow_config.check_if_running == CheckJobRunning.WaitForRun,
project_id=self.dataflow_config.project_id,
location=self.dataflow_config.location,
job_name=self.dataflow_job_name,
gcp_conn_id=self.gcp_conn_id,
impersonation_chain=self.dataflow_config.impersonation_chain,
poll_sleep=self.dataflow_config.poll_sleep,
cancel_timeout=self.dataflow_config.cancel_timeout,
),
method_name="execute_complete",
)
else:
self.defer(
trigger=BeamJavaPipelineTrigger(
variables=self.pipeline_options,
jar=self.jar,
job_class=self.job_class,
runner=self.runner,
check_if_running=self.dataflow_config.check_if_running == CheckJobRunning.WaitForRun,
gcp_conn_id=self.gcp_conn_id,
),
method_name="execute_complete",
)
[docs] def on_kill(self) -> None:
if self.dataflow_hook and self.dataflow_job_id:
self.log.info("Dataflow job with id: `%s` was requested to be cancelled.", self.dataflow_job_id)
self.dataflow_hook.cancel_job(
job_id=self.dataflow_job_id,
project_id=self.dataflow_config.project_id,
location=self.dataflow_config.location,
)
[docs]class BeamRunGoPipelineOperator(BeamBasePipelineOperator):
"""
Launch Apache Beam pipelines written in Go.
Note that both ``default_pipeline_options`` and ``pipeline_options``
will be merged to specify pipeline execution parameter, and
``default_pipeline_options`` is expected to save high-level options,
for instances, project and zone information, which apply to all beam
operators in the DAG.
.. seealso::
For more information on how to use this operator, take a look at the guide:
:ref:`howto/operator:BeamRunGoPipelineOperator`
.. seealso::
For more detail on Apache Beam have a look at the reference:
https://beam.apache.org/documentation/
:param go_file: Reference to the Apache Beam pipeline Go source file,
e.g. /local/path/to/main.go or gs://bucket/path/to/main.go.
Exactly one of go_file and launcher_binary must be provided.
:param launcher_binary: Reference to the Apache Beam pipeline Go binary compiled for the launching
platform, e.g. /local/path/to/launcher-main or gs://bucket/path/to/launcher-main.
Exactly one of go_file and launcher_binary must be provided.
:param worker_binary: Reference to the Apache Beam pipeline Go binary compiled for the worker platform,
e.g. /local/path/to/worker-main or gs://bucket/path/to/worker-main.
Needed if the OS or architecture of the workers running the pipeline is different from that
of the platform launching the pipeline. For more information, see the Apache Beam documentation
for Go cross compilation: https://beam.apache.org/documentation/sdks/go-cross-compilation/.
If launcher_binary is not set, providing a worker_binary will have no effect. If launcher_binary is
set and worker_binary is not, worker_binary will default to the value of launcher_binary.
"""
[docs] template_fields = [
"go_file",
"launcher_binary",
"worker_binary",
"runner",
"pipeline_options",
"default_pipeline_options",
"dataflow_config",
]
[docs] template_fields_renderers = {"dataflow_config": "json", "pipeline_options": "json"}
def __init__(
self,
*,
go_file: str = "",
launcher_binary: str = "",
worker_binary: str = "",
runner: str = "DirectRunner",
default_pipeline_options: dict | None = None,
pipeline_options: dict | None = None,
gcp_conn_id: str = "google_cloud_default",
dataflow_config: DataflowConfiguration | dict | None = None,
**kwargs,
) -> None:
super().__init__(
runner=runner,
default_pipeline_options=default_pipeline_options,
pipeline_options=pipeline_options,
gcp_conn_id=gcp_conn_id,
dataflow_config=dataflow_config,
**kwargs,
)
self.go_file = go_file
self.launcher_binary = launcher_binary
self.worker_binary = worker_binary or launcher_binary
[docs] def execute(self, context: Context):
"""Execute the Apache Beam Pipeline."""
if not exactly_one(self.go_file, self.launcher_binary):
raise ValueError("Exactly one of `go_file` and `launcher_binary` must be set")
self._execute_context = context
self._cast_dataflow_config()
if self.dataflow_config.impersonation_chain:
self.log.warning(
"Impersonation chain parameter is not supported for Apache Beam GO SDK and will be skipped "
"in the execution"
)
self.dataflow_support_impersonation = False
self.pipeline_options.setdefault("labels", {}).update(
{"airflow-version": "v" + version.replace(".", "-").replace("+", "-")}
)
(
is_dataflow,
dataflow_job_name,
snake_case_pipeline_options,
process_line_callback,
_,
) = self._init_pipeline_options(format_pipeline_options=True, job_name_variable_key="job_name")
if not self.beam_hook:
raise AirflowException("Beam hook is not defined.")
go_artifact: _GoArtifact = (
_GoFile(file=self.go_file)
if self.go_file
else _GoBinary(launcher=self.launcher_binary, worker=self.worker_binary)
)
with ExitStack() as exit_stack:
if go_artifact.is_located_on_gcs():
gcs_hook = GCSHook(self.gcp_conn_id)
tmp_dir = exit_stack.enter_context(tempfile.TemporaryDirectory(prefix="apache-beam-go"))
go_artifact.download_from_gcs(gcs_hook=gcs_hook, tmp_dir=tmp_dir)
if is_dataflow and self.dataflow_hook:
with self.dataflow_hook.provide_authorized_gcloud():
go_artifact.start_pipeline(
beam_hook=self.beam_hook,
variables=snake_case_pipeline_options,
process_line_callback=process_line_callback,
)
DataflowJobLink.persist(
self,
context,
self.dataflow_config.project_id,
self.dataflow_config.location,
self.dataflow_job_id,
)
if dataflow_job_name and self.dataflow_config.location:
self.dataflow_hook.wait_for_done(
job_name=dataflow_job_name,
location=self.dataflow_config.location,
job_id=self.dataflow_job_id,
multiple_jobs=False,
project_id=self.dataflow_config.project_id,
)
return {"dataflow_job_id": self.dataflow_job_id}
else:
go_artifact.start_pipeline(
beam_hook=self.beam_hook,
variables=snake_case_pipeline_options,
process_line_callback=process_line_callback,
)
[docs] def on_kill(self) -> None:
if self.dataflow_hook and self.dataflow_job_id:
self.log.info("Dataflow job with id: `%s` was requested to be cancelled.", self.dataflow_job_id)
self.dataflow_hook.cancel_job(
job_id=self.dataflow_job_id,
project_id=self.dataflow_config.project_id,
location=self.dataflow_config.location,
)
class _GoArtifact(ABC):
@abstractmethod
def is_located_on_gcs(self) -> bool: ...
@abstractmethod
def download_from_gcs(self, gcs_hook: GCSHook, tmp_dir: str) -> None: ...
@abstractmethod
def start_pipeline(
self,
beam_hook: BeamHook,
variables: dict,
process_line_callback: Callable[[str], None] | None = None,
) -> None: ...
class _GoFile(_GoArtifact):
def __init__(self, file: str) -> None:
self.file = file
self.should_init_go_module = False
def is_located_on_gcs(self) -> bool:
return _object_is_located_on_gcs(self.file)
def download_from_gcs(self, gcs_hook: GCSHook, tmp_dir: str) -> None:
self.file = _download_object_from_gcs(gcs_hook=gcs_hook, uri=self.file, tmp_dir=tmp_dir)
self.should_init_go_module = True
def start_pipeline(
self,
beam_hook: BeamHook,
variables: dict,
process_line_callback: Callable[[str], None] | None = None,
) -> None:
beam_hook.start_go_pipeline(
variables=variables,
go_file=self.file,
process_line_callback=process_line_callback,
should_init_module=self.should_init_go_module,
)
class _GoBinary(_GoArtifact):
def __init__(self, launcher: str, worker: str) -> None:
self.launcher = launcher
self.worker = worker
def is_located_on_gcs(self) -> bool:
return any(_object_is_located_on_gcs(path) for path in (self.launcher, self.worker))
def download_from_gcs(self, gcs_hook: GCSHook, tmp_dir: str) -> None:
binaries_are_equal = self.launcher == self.worker
binaries_to_download = []
if _object_is_located_on_gcs(self.launcher):
binaries_to_download.append("launcher")
if not binaries_are_equal and _object_is_located_on_gcs(self.worker):
binaries_to_download.append("worker")
download_fn = partial(_download_object_from_gcs, gcs_hook=gcs_hook, tmp_dir=tmp_dir)
with ThreadPoolExecutor(max_workers=len(binaries_to_download)) as executor:
futures = {
executor.submit(download_fn, uri=getattr(self, binary), tmp_prefix=f"{binary}-"): binary
for binary in binaries_to_download
}
for future in as_completed(futures):
binary = futures[future]
tmp_path = future.result()
_make_executable(tmp_path)
setattr(self, binary, tmp_path)
if binaries_are_equal:
self.worker = self.launcher
def start_pipeline(
self,
beam_hook: BeamHook,
variables: dict,
process_line_callback: Callable[[str], None] | None = None,
) -> None:
beam_hook.start_go_pipeline_with_binary(
variables=variables,
launcher_binary=self.launcher,
worker_binary=self.worker,
process_line_callback=process_line_callback,
)
def _object_is_located_on_gcs(path: str) -> bool:
return path.lower().startswith("gs://")
def _download_object_from_gcs(gcs_hook: GCSHook, uri: str, tmp_dir: str, tmp_prefix: str = "") -> str:
tmp_name = f"{tmp_prefix}{os.path.basename(uri)}"
tmp_path = os.path.join(tmp_dir, tmp_name)
bucket, prefix = _parse_gcs_url(uri)
gcs_hook.download(bucket_name=bucket, object_name=prefix, filename=tmp_path)
return tmp_path
def _make_executable(path: str) -> None:
st = os.stat(path)
os.chmod(path, st.st_mode | stat.S_IEXEC)