Source code for airflow.providers.apache.hive.operators.hive

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations

import os
import re
from functools import cached_property
from typing import TYPE_CHECKING, Any, Sequence

from airflow.configuration import conf
from airflow.models import BaseOperator
from airflow.providers.apache.hive.hooks.hive import HiveCliHook
from airflow.utils import operator_helpers
from airflow.utils.operator_helpers import context_to_airflow_vars

if TYPE_CHECKING:
    from airflow.utils.context import Context


[docs]class HiveOperator(BaseOperator): """ Executes hql code or hive script in a specific Hive database. :param hql: the hql to be executed. Note that you may also use a relative path from the dag file of a (template) hive script. (templated) :param hive_cli_conn_id: Reference to the :ref:`Hive CLI connection id <howto/connection:hive_cli>`. (templated) :param hiveconfs: if defined, these key value pairs will be passed to hive as ``-hiveconf "key"="value"`` :param hiveconf_jinja_translate: when True, hiveconf-type templating ${var} gets translated into jinja-type templating {{ var }} and ${hiveconf:var} gets translated into jinja-type templating {{ var }}. Note that you may want to use this along with the ``DAG(user_defined_macros=myargs)`` parameter. View the DAG object documentation for more details. :param script_begin_tag: If defined, the operator will get rid of the part of the script before the first occurrence of `script_begin_tag` :param mapred_queue: queue used by the Hadoop CapacityScheduler. (templated) :param mapred_queue_priority: priority within CapacityScheduler queue. Possible settings include: VERY_HIGH, HIGH, NORMAL, LOW, VERY_LOW :param mapred_job_name: This name will appear in the jobtracker. This can make monitoring easier. :param hive_cli_params: parameters passed to hive CLO :param auth: optional authentication option passed for the Hive connection :param proxy_user: Run HQL code as this user. """
[docs] template_fields: Sequence[str] = ( "hql", "schema", "hive_cli_conn_id", "mapred_queue", "hiveconfs", "mapred_job_name", "mapred_queue_priority", "proxy_user", )
[docs] template_ext: Sequence[str] = ( ".hql", ".sql", )
[docs] template_fields_renderers = {"hql": "hql"}
[docs] ui_color = "#f0e4ec"
def __init__( self, *, hql: str, hive_cli_conn_id: str = "hive_cli_default", schema: str = "default", hiveconfs: dict[Any, Any] | None = None, hiveconf_jinja_translate: bool = False, script_begin_tag: str | None = None, mapred_queue: str | None = None, mapred_queue_priority: str | None = None, mapred_job_name: str | None = None, hive_cli_params: str = "", auth: str | None = None, proxy_user: str | None = None, **kwargs: Any, ) -> None: super().__init__(**kwargs) self.hql = hql self.hive_cli_conn_id = hive_cli_conn_id self.schema = schema self.hiveconfs = hiveconfs or {} self.hiveconf_jinja_translate = hiveconf_jinja_translate self.script_begin_tag = script_begin_tag self.mapred_queue = mapred_queue self.mapred_queue_priority = mapred_queue_priority self.mapred_job_name = mapred_job_name self.hive_cli_params = hive_cli_params self.auth = auth self.proxy_user = proxy_user job_name_template = conf.get_mandatory_value( "hive", "mapred_job_name_template", fallback="Airflow HiveOperator task for {hostname}.{dag_id}.{task_id}.{execution_date}", ) self.mapred_job_name_template: str = job_name_template @cached_property
[docs] def hook(self) -> HiveCliHook: """Get Hive cli hook.""" return HiveCliHook( hive_cli_conn_id=self.hive_cli_conn_id, mapred_queue=self.mapred_queue, mapred_queue_priority=self.mapred_queue_priority, mapred_job_name=self.mapred_job_name, hive_cli_params=self.hive_cli_params, auth=self.auth, proxy_user=self.proxy_user, )
[docs] def prepare_template(self) -> None: if self.hiveconf_jinja_translate: self.hql = re.sub(r"(\$\{(hiveconf:)?([ a-zA-Z0-9_]*)\})", r"{{ \g<3> }}", self.hql) if self.script_begin_tag and self.script_begin_tag in self.hql: self.hql = "\n".join(self.hql.split(self.script_begin_tag)[1:])
[docs] def execute(self, context: Context) -> None: self.log.info("Executing: %s", self.hql) # set the mapred_job_name if it's not set with dag, task, execution time info if not self.mapred_job_name: ti = context["ti"] if ti.execution_date is None: raise RuntimeError("execution_date is None") self.hook.mapred_job_name = self.mapred_job_name_template.format( dag_id=ti.dag_id, task_id=ti.task_id, execution_date=ti.execution_date.isoformat(), hostname=ti.hostname.split(".")[0], ) if self.hiveconf_jinja_translate: self.hiveconfs = context_to_airflow_vars(context) else: self.hiveconfs.update(context_to_airflow_vars(context)) self.log.info("Passing HiveConf: %s", self.hiveconfs) self.hook.run_cli(hql=self.hql, schema=self.schema, hive_conf=self.hiveconfs)
[docs] def dry_run(self) -> None: # Reset airflow environment variables to prevent # existing env vars from impacting behavior. self.clear_airflow_vars() self.hook.test_hql(hql=self.hql)
[docs] def on_kill(self) -> None: if self.hook: self.hook.kill()
[docs] def clear_airflow_vars(self) -> None: """Reset airflow environment variables to prevent existing ones from impacting behavior.""" blank_env_vars = { value["env_var_format"]: "" for value in operator_helpers.AIRFLOW_VAR_NAME_FORMAT_MAPPING.values() } os.environ.update(blank_env_vars)

Was this entry helpful?