Source code for airflow.providers.apache.spark.operators.spark_pyspark

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations

import inspect
from collections.abc import Callable, Sequence

from airflow.providers.apache.spark.hooks.spark_connect import SparkConnectHook
from airflow.providers.common.compat.sdk import BaseHook
from airflow.providers.common.compat.standard.operators import PythonOperator

[docs] SPARK_CONTEXT_KEYS = ["spark", "sc"]
[docs] class PySparkOperator(PythonOperator): """Submit the run of a pyspark job to an external spark-connect service or directly run the pyspark job in a standalone mode."""
[docs] template_fields: Sequence[str] = ("conn_id", "config_kwargs", *PythonOperator.template_fields)
def __init__( self, python_callable: Callable, conn_id: str | None = None, config_kwargs: dict | None = None, **kwargs, ):
[docs] self.conn_id = conn_id
[docs] self.config_kwargs = config_kwargs or {}
signature = inspect.signature(python_callable) parameters = [ param.replace(default=None) if param.name in SPARK_CONTEXT_KEYS else param for param in signature.parameters.values() ] # mypy does not understand __signature__ attribute # see https://github.com/python/mypy/issues/12472 python_callable.__signature__ = signature.replace(parameters=parameters) # type: ignore[attr-defined] super().__init__( python_callable=python_callable, **kwargs, )
[docs] def execute_callable(self): from pyspark import SparkConf from pyspark.sql import SparkSession conf = SparkConf() conf.set("spark.app.name", f"{self.dag_id}-{self.task_id}") url = "local[*]" if self.conn_id: # we handle both spark connect and spark standalone conn = BaseHook.get_connection(self.conn_id) if conn.conn_type == SparkConnectHook.conn_type: url = SparkConnectHook(self.conn_id).get_connection_url() elif conn.port: url = f"{conn.host}:{conn.port}" elif conn.host: url = conn.host for key, value in conn.extra_dejson.items(): conf.set(key, value) # you cannot have both remote and master if url.startswith("sc://"): conf.set("spark.remote", url) # task can override connection config for key, value in self.config_kwargs.items(): conf.set(key, value) if not conf.get("spark.remote") and not conf.get("spark.master"): conf.set("spark.master", url) spark_session = SparkSession.builder.config(conf=conf).getOrCreate() try: self.op_kwargs = {**self.op_kwargs, "spark": spark_session} return super().execute_callable() finally: spark_session.stop()

Was this entry helpful?