Source code for airflow.providers.dbt.cloud.sensors.dbt
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations
import time
from functools import cached_property
from typing import TYPE_CHECKING, Any
from airflow.configuration import conf
from airflow.exceptions import AirflowException
from airflow.providers.dbt.cloud.hooks.dbt import DbtCloudHook, DbtCloudJobRunException, DbtCloudJobRunStatus
from airflow.providers.dbt.cloud.triggers.dbt import DbtCloudRunJobTrigger
from airflow.providers.dbt.cloud.utils.openlineage import generate_openlineage_events_from_dbt_cloud_run
from airflow.sensors.base import BaseSensorOperator
if TYPE_CHECKING:
from airflow.providers.openlineage.extractors import OperatorLineage
from airflow.utils.context import Context
[docs]class DbtCloudJobRunSensor(BaseSensorOperator):
"""
Checks the status of a dbt Cloud job run.
.. seealso::
For more information on how to use this sensor, take a look at the guide:
:ref:`howto/operator:DbtCloudJobRunSensor`
:param dbt_cloud_conn_id: The connection identifier for connecting to dbt Cloud.
:param run_id: The job run identifier.
:param account_id: The dbt Cloud account identifier.
:param deferrable: Run sensor in the deferrable mode.
"""
[docs] template_fields = ("dbt_cloud_conn_id", "run_id", "account_id")
def __init__(
self,
*,
dbt_cloud_conn_id: str = DbtCloudHook.default_conn_name,
run_id: int,
account_id: int | None = None,
deferrable: bool = conf.getboolean("operators", "default_deferrable", fallback=False),
**kwargs,
) -> None:
if deferrable:
if "poke_interval" not in kwargs:
kwargs["poke_interval"] = 5
if "timeout" not in kwargs:
kwargs["timeout"] = 60 * 60 * 24 * 7
super().__init__(**kwargs)
self.dbt_cloud_conn_id = dbt_cloud_conn_id
self.run_id = run_id
self.account_id = account_id
self.deferrable = deferrable
@cached_property
[docs] def hook(self):
"""Returns DBT Cloud hook."""
return DbtCloudHook(self.dbt_cloud_conn_id)
[docs] def poke(self, context: Context) -> bool:
job_run_status = self.hook.get_job_run_status(run_id=self.run_id, account_id=self.account_id)
if job_run_status == DbtCloudJobRunStatus.ERROR.value:
message = f"Job run {self.run_id} has failed."
raise DbtCloudJobRunException(message)
if job_run_status == DbtCloudJobRunStatus.CANCELLED.value:
message = f"Job run {self.run_id} has been cancelled."
raise DbtCloudJobRunException(message)
return job_run_status == DbtCloudJobRunStatus.SUCCESS.value
[docs] def execute(self, context: Context) -> None:
"""
Run the sensor.
Depending on whether ``deferrable`` is set, this would either defer to
the triggerer or poll for states of the job run, until the job reaches a
failure state or success state.
"""
if not self.deferrable:
super().execute(context)
else:
end_time = time.time() + self.timeout
if not self.poke(context=context):
self.defer(
timeout=self.execution_timeout,
trigger=DbtCloudRunJobTrigger(
run_id=self.run_id,
conn_id=self.dbt_cloud_conn_id,
account_id=self.account_id,
poll_interval=self.poke_interval,
end_time=end_time,
),
method_name="execute_complete",
)
[docs] def execute_complete(self, context: Context, event: dict[str, Any]) -> int:
"""
Execute when the trigger fires - returns immediately.
This relies on trigger to throw an exception, otherwise it assumes
execution was successful.
"""
if event["status"] in ["error", "cancelled"]:
raise AirflowException()
self.log.info(event["message"])
return int(event["run_id"])
[docs] def get_openlineage_facets_on_complete(self, task_instance) -> OperatorLineage:
"""Implement _on_complete because job_run needs to be triggered first in execute method."""
return generate_openlineage_events_from_dbt_cloud_run(operator=self, task_instance=task_instance)