airflow.providers.google.cloud.triggers.mlengine

Classes

MLEngineStartTrainingJobTrigger

MLEngineStartTrainingJobTrigger run on the trigger worker to perform starting training job operation.

Module Contents

class airflow.providers.google.cloud.triggers.mlengine.MLEngineStartTrainingJobTrigger(conn_id, job_id, region, poll_interval=4.0, package_uris=None, training_python_module=None, training_args=None, runtime_version=None, python_version=None, job_dir=None, project_id=PROVIDE_PROJECT_ID, labels=None, gcp_conn_id='google_cloud_default', impersonation_chain=None)[source]

Bases: airflow.triggers.base.BaseTrigger

MLEngineStartTrainingJobTrigger run on the trigger worker to perform starting training job operation.

Parameters:
  • conn_id (str) – Reference to google cloud connection id

  • job_id (str) – The ID of the job. It will be suffixed with hash of job configuration

  • project_id (str) – Google Cloud Project where the job is running

  • poll_interval (float) – polling period in seconds to check for the status

conn_id[source]
job_id[source]
project_id = None[source]
region[source]
poll_interval = 4.0[source]
runtime_version = None[source]
python_version = None[source]
job_dir = None[source]
package_uris = None[source]
training_python_module = None[source]
training_args = None[source]
labels = None[source]
gcp_conn_id = 'google_cloud_default'[source]
impersonation_chain = None[source]
serialize()[source]

Serialize MLEngineStartTrainingJobTrigger arguments and classpath.

async run()[source]

Get current job execution status and yields a TriggerEvent.

Was this entry helpful?