Source code for airflow.providers.google.cloud.triggers.bigquery

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations

import asyncio
from collections.abc import AsyncIterator, Sequence
from typing import TYPE_CHECKING, Any, SupportsAbs

from aiohttp import ClientSession
from aiohttp.client_exceptions import ClientResponseError

from airflow.exceptions import AirflowException
from airflow.models.taskinstance import TaskInstance
from airflow.providers.google.cloud.hooks.bigquery import BigQueryAsyncHook, BigQueryTableAsyncHook
from airflow.triggers.base import BaseTrigger, TriggerEvent
from airflow.utils.session import provide_session
from airflow.utils.state import TaskInstanceState

if TYPE_CHECKING:
    from sqlalchemy.orm.session import Session


[docs]class BigQueryInsertJobTrigger(BaseTrigger): """ BigQueryInsertJobTrigger run on the trigger worker to perform insert operation. :param conn_id: Reference to google cloud connection id :param job_id: The ID of the job. It will be suffixed with hash of job configuration :param project_id: Google Cloud Project where the job is running :param location: The dataset location. :param dataset_id: The dataset ID of the requested table. (templated) :param table_id: The table ID of the requested table. (templated) :param poll_interval: polling period in seconds to check for the status. (templated) :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account. (templated) """ def __init__( self, conn_id: str, job_id: str | None, project_id: str, location: str | None, dataset_id: str | None = None, table_id: str | None = None, poll_interval: float = 4.0, impersonation_chain: str | Sequence[str] | None = None, cancel_on_kill: bool = True, ): super().__init__() self.log.info("Using the connection %s .", conn_id) self.conn_id = conn_id self.job_id = job_id self._job_conn = None self.dataset_id = dataset_id self.project_id = project_id self.location = location self.table_id = table_id self.poll_interval = poll_interval self.impersonation_chain = impersonation_chain self.cancel_on_kill = cancel_on_kill
[docs] def serialize(self) -> tuple[str, dict[str, Any]]: """Serialize BigQueryInsertJobTrigger arguments and classpath.""" return ( "airflow.providers.google.cloud.triggers.bigquery.BigQueryInsertJobTrigger", { "conn_id": self.conn_id, "job_id": self.job_id, "dataset_id": self.dataset_id, "project_id": self.project_id, "location": self.location, "table_id": self.table_id, "poll_interval": self.poll_interval, "impersonation_chain": self.impersonation_chain, "cancel_on_kill": self.cancel_on_kill, }, )
@provide_session
[docs] def get_task_instance(self, session: Session) -> TaskInstance: query = session.query(TaskInstance).filter( TaskInstance.dag_id == self.task_instance.dag_id, TaskInstance.task_id == self.task_instance.task_id, TaskInstance.run_id == self.task_instance.run_id, TaskInstance.map_index == self.task_instance.map_index, ) task_instance = query.one_or_none() if task_instance is None: raise AirflowException( "TaskInstance with dag_id: %s, task_id: %s, run_id: %s and map_index: %s is not found", self.task_instance.dag_id, self.task_instance.task_id, self.task_instance.run_id, self.task_instance.map_index, ) return task_instance
[docs] def safe_to_cancel(self) -> bool: """ Whether it is safe to cancel the external job which is being executed by this trigger. This is to avoid the case that `asyncio.CancelledError` is called because the trigger itself is stopped. Because in those cases, we should NOT cancel the external job. """ # Database query is needed to get the latest state of the task instance. task_instance = self.get_task_instance() # type: ignore[call-arg] return task_instance.state != TaskInstanceState.DEFERRED
[docs] async def run(self) -> AsyncIterator[TriggerEvent]: # type: ignore[override] """Get current job execution status and yields a TriggerEvent.""" hook = self._get_async_hook() try: while True: job_status = await hook.get_job_status( job_id=self.job_id, project_id=self.project_id, location=self.location ) if job_status["status"] == "success": yield TriggerEvent( { "job_id": self.job_id, "status": job_status["status"], "message": job_status["message"], } ) return elif job_status["status"] == "error": yield TriggerEvent(job_status) return else: self.log.info( "Bigquery job status is %s. Sleeping for %s seconds.", job_status["status"], self.poll_interval, ) await asyncio.sleep(self.poll_interval) except asyncio.CancelledError: if self.job_id and self.cancel_on_kill and self.safe_to_cancel(): self.log.info( "The job is safe to cancel the as airflow TaskInstance is not in deferred state." ) self.log.info( "Cancelling job. Project ID: %s, Location: %s, Job ID: %s", self.project_id, self.location, self.job_id, ) await hook.cancel_job( # type: ignore[union-attr] job_id=self.job_id, project_id=self.project_id, location=self.location ) else: self.log.info( "Trigger may have shutdown. Skipping to cancel job because the airflow " "task is not cancelled yet: Project ID: %s, Location:%s, Job ID:%s", self.project_id, self.location, self.job_id, ) except Exception as e: self.log.exception("Exception occurred while checking for query completion") yield TriggerEvent({"status": "error", "message": str(e)})
def _get_async_hook(self) -> BigQueryAsyncHook: return BigQueryAsyncHook(gcp_conn_id=self.conn_id, impersonation_chain=self.impersonation_chain)
[docs]class BigQueryCheckTrigger(BigQueryInsertJobTrigger): """BigQueryCheckTrigger run on the trigger worker."""
[docs] def serialize(self) -> tuple[str, dict[str, Any]]: """Serialize BigQueryCheckTrigger arguments and classpath.""" return ( "airflow.providers.google.cloud.triggers.bigquery.BigQueryCheckTrigger", { "conn_id": self.conn_id, "job_id": self.job_id, "dataset_id": self.dataset_id, "project_id": self.project_id, "location": self.location, "table_id": self.table_id, "poll_interval": self.poll_interval, "impersonation_chain": self.impersonation_chain, "cancel_on_kill": self.cancel_on_kill, }, )
[docs] async def run(self) -> AsyncIterator[TriggerEvent]: # type: ignore[override] """Get current job execution status and yields a TriggerEvent.""" hook = self._get_async_hook() try: while True: # Poll for job execution status job_status = await hook.get_job_status(job_id=self.job_id, project_id=self.project_id) if job_status["status"] == "success": query_results = await hook.get_job_output(job_id=self.job_id, project_id=self.project_id) records = hook.get_records(query_results) # If empty list, then no records are available if not records: yield TriggerEvent( { "status": job_status["status"], "message": job_status["message"], "records": None, } ) else: # Extract only first record from the query results first_record = records.pop(0) yield TriggerEvent( { "status": job_status["status"], "message": job_status["message"], "records": first_record, } ) return elif job_status["status"] == "error": yield TriggerEvent({"status": "error", "message": job_status["message"]}) return else: self.log.info( "Bigquery job status is %s. Sleeping for %s seconds.", job_status["status"], self.poll_interval, ) await asyncio.sleep(self.poll_interval) except Exception as e: self.log.exception("Exception occurred while checking for query completion") yield TriggerEvent({"status": "error", "message": str(e)})
[docs]class BigQueryGetDataTrigger(BigQueryInsertJobTrigger): """ BigQueryGetDataTrigger run on the trigger worker, inherits from BigQueryInsertJobTrigger class. :param as_dict: if True returns the result as a list of dictionaries, otherwise as list of lists (default: False). """ def __init__(self, as_dict: bool = False, selected_fields: str | None = None, **kwargs): super().__init__(**kwargs) self.as_dict = as_dict self.selected_fields = selected_fields
[docs] def serialize(self) -> tuple[str, dict[str, Any]]: """Serialize BigQueryInsertJobTrigger arguments and classpath.""" return ( "airflow.providers.google.cloud.triggers.bigquery.BigQueryGetDataTrigger", { "conn_id": self.conn_id, "job_id": self.job_id, "dataset_id": self.dataset_id, "project_id": self.project_id, "location": self.location, "table_id": self.table_id, "poll_interval": self.poll_interval, "impersonation_chain": self.impersonation_chain, "as_dict": self.as_dict, "selected_fields": self.selected_fields, }, )
[docs] async def run(self) -> AsyncIterator[TriggerEvent]: # type: ignore[override] """Get current job execution status and yields a TriggerEvent with response data.""" hook = self._get_async_hook() try: while True: # Poll for job execution status job_status = await hook.get_job_status(job_id=self.job_id, project_id=self.project_id) if job_status["status"] == "success": query_results = await hook.get_job_output(job_id=self.job_id, project_id=self.project_id) records = hook.get_records( query_results=query_results, as_dict=self.as_dict, selected_fields=self.selected_fields, ) self.log.debug("Response from hook: %s", job_status["status"]) yield TriggerEvent( { "status": "success", "message": job_status["message"], "records": records, } ) return elif job_status["status"] == "error": yield TriggerEvent(job_status) return else: self.log.info( "Bigquery job status is %s. Sleeping for %s seconds.", job_status["status"], self.poll_interval, ) await asyncio.sleep(self.poll_interval) except Exception as e: self.log.exception("Exception occurred while checking for query completion") yield TriggerEvent({"status": "error", "message": str(e)})
[docs]class BigQueryIntervalCheckTrigger(BigQueryInsertJobTrigger): """ BigQueryIntervalCheckTrigger run on the trigger worker, inherits from BigQueryInsertJobTrigger class. :param conn_id: Reference to google cloud connection id :param first_job_id: The ID of the job 1 performed :param second_job_id: The ID of the job 2 performed :param project_id: Google Cloud Project where the job is running :param dataset_id: The dataset ID of the requested table. (templated) :param table: table name :param metrics_thresholds: dictionary of ratios indexed by metrics :param location: The dataset location. :param date_filter_column: column name. (templated) :param days_back: number of days between ds and the ds we want to check against. (templated) :param ratio_formula: ration formula. (templated) :param ignore_zero: boolean value to consider zero or not. (templated) :param table_id: The table ID of the requested table. (templated) :param poll_interval: polling period in seconds to check for the status. (templated) :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account. (templated) """ def __init__( self, conn_id: str, first_job_id: str, second_job_id: str, project_id: str, table: str, metrics_thresholds: dict[str, int], location: str | None = None, date_filter_column: str | None = "ds", days_back: SupportsAbs[int] = -7, ratio_formula: str = "max_over_min", ignore_zero: bool = True, dataset_id: str | None = None, table_id: str | None = None, poll_interval: float = 4.0, impersonation_chain: str | Sequence[str] | None = None, ): super().__init__( conn_id=conn_id, job_id=first_job_id, project_id=project_id, location=location, dataset_id=dataset_id, table_id=table_id, poll_interval=poll_interval, impersonation_chain=impersonation_chain, ) self.conn_id = conn_id self.first_job_id = first_job_id self.second_job_id = second_job_id self.project_id = project_id self.table = table self.metrics_thresholds = metrics_thresholds self.date_filter_column = date_filter_column self.days_back = days_back self.ratio_formula = ratio_formula self.ignore_zero = ignore_zero
[docs] def serialize(self) -> tuple[str, dict[str, Any]]: """Serialize BigQueryCheckTrigger arguments and classpath.""" return ( "airflow.providers.google.cloud.triggers.bigquery.BigQueryIntervalCheckTrigger", { "conn_id": self.conn_id, "first_job_id": self.first_job_id, "second_job_id": self.second_job_id, "project_id": self.project_id, "table": self.table, "metrics_thresholds": self.metrics_thresholds, "location": self.location, "date_filter_column": self.date_filter_column, "days_back": self.days_back, "ratio_formula": self.ratio_formula, "ignore_zero": self.ignore_zero, "impersonation_chain": self.impersonation_chain, }, )
[docs] async def run(self) -> AsyncIterator[TriggerEvent]: # type: ignore[override] """Get current job execution status and yields a TriggerEvent.""" hook = self._get_async_hook() try: while True: first_job_response_from_hook = await hook.get_job_status( job_id=self.first_job_id, project_id=self.project_id ) second_job_response_from_hook = await hook.get_job_status( job_id=self.second_job_id, project_id=self.project_id ) if ( first_job_response_from_hook["status"] == "success" and second_job_response_from_hook["status"] == "success" ): first_query_results = await hook.get_job_output( job_id=self.first_job_id, project_id=self.project_id ) second_query_results = await hook.get_job_output( job_id=self.second_job_id, project_id=self.project_id ) first_records = hook.get_records(first_query_results) second_records = hook.get_records(second_query_results) # If empty list, then no records are available if not first_records: first_job_row: str | None = None else: # Extract only first record from the query results first_job_row = first_records.pop(0) # If empty list, then no records are available if not second_records: second_job_row: str | None = None else: # Extract only first record from the query results second_job_row = second_records.pop(0) hook.interval_check( first_job_row, second_job_row, self.metrics_thresholds, self.ignore_zero, self.ratio_formula, ) yield TriggerEvent( { "status": "success", "message": "Job completed", "first_row_data": first_job_row, "second_row_data": second_job_row, } ) return elif ( first_job_response_from_hook["status"] == "pending" or second_job_response_from_hook["status"] == "pending" ): self.log.info("Query is still running...") self.log.info("Sleeping for %s seconds.", self.poll_interval) await asyncio.sleep(self.poll_interval) else: yield TriggerEvent( {"status": "error", "message": second_job_response_from_hook["message"], "data": None} ) return except Exception as e: self.log.exception("Exception occurred while checking for query completion") yield TriggerEvent({"status": "error", "message": str(e)})
[docs]class BigQueryValueCheckTrigger(BigQueryInsertJobTrigger): """ BigQueryValueCheckTrigger run on the trigger worker, inherits from BigQueryInsertJobTrigger class. :param conn_id: Reference to google cloud connection id :param sql: the sql to be executed :param pass_value: pass value :param job_id: The ID of the job :param project_id: Google Cloud Project where the job is running :param tolerance: certain metrics for tolerance. (templated) :param dataset_id: The dataset ID of the requested table. (templated) :param table_id: The table ID of the requested table. (templated) :param location: The dataset location :param poll_interval: polling period in seconds to check for the status. (templated) :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated). """ def __init__( self, conn_id: str, sql: str, pass_value: int | float | str, job_id: str | None, project_id: str, tolerance: Any = None, dataset_id: str | None = None, table_id: str | None = None, location: str | None = None, poll_interval: float = 4.0, impersonation_chain: str | Sequence[str] | None = None, ): super().__init__( conn_id=conn_id, job_id=job_id, project_id=project_id, dataset_id=dataset_id, table_id=table_id, location=location, poll_interval=poll_interval, impersonation_chain=impersonation_chain, ) self.sql = sql self.pass_value = pass_value self.tolerance = tolerance
[docs] def serialize(self) -> tuple[str, dict[str, Any]]: """Serialize BigQueryValueCheckTrigger arguments and classpath.""" return ( "airflow.providers.google.cloud.triggers.bigquery.BigQueryValueCheckTrigger", { "conn_id": self.conn_id, "pass_value": self.pass_value, "job_id": self.job_id, "dataset_id": self.dataset_id, "project_id": self.project_id, "sql": self.sql, "table_id": self.table_id, "tolerance": self.tolerance, "location": self.location, "poll_interval": self.poll_interval, "impersonation_chain": self.impersonation_chain, }, )
[docs] async def run(self) -> AsyncIterator[TriggerEvent]: # type: ignore[override] """Get current job execution status and yields a TriggerEvent.""" hook = self._get_async_hook() try: while True: # Poll for job execution status response_from_hook = await hook.get_job_status(job_id=self.job_id, project_id=self.project_id) if response_from_hook["status"] == "success": query_results = await hook.get_job_output(job_id=self.job_id, project_id=self.project_id) records = hook.get_records(query_results) records = records.pop(0) if records else None hook.value_check(self.sql, self.pass_value, records, self.tolerance) yield TriggerEvent({"status": "success", "message": "Job completed", "records": records}) return elif response_from_hook["status"] == "pending": self.log.info("Query is still running...") self.log.info("Sleeping for %s seconds.", self.poll_interval) await asyncio.sleep(self.poll_interval) else: yield TriggerEvent( {"status": "error", "message": response_from_hook["message"], "records": None} ) return except Exception as e: self.log.exception("Exception occurred while checking for query completion") yield TriggerEvent({"status": "error", "message": str(e)})
[docs]class BigQueryTableExistenceTrigger(BaseTrigger): """ Initialize the BigQuery Table Existence Trigger with needed parameters. :param project_id: Google Cloud Project where the job is running :param dataset_id: The dataset ID of the requested table. :param table_id: The table ID of the requested table. :param gcp_conn_id: Reference to google cloud connection id :param hook_params: params for hook :param poll_interval: polling period in seconds to check for the status :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account. (templated) """ def __init__( self, project_id: str, dataset_id: str, table_id: str, gcp_conn_id: str, hook_params: dict[str, Any], poll_interval: float = 4.0, impersonation_chain: str | Sequence[str] | None = None, ): self.dataset_id = dataset_id self.project_id = project_id self.table_id = table_id self.gcp_conn_id: str = gcp_conn_id self.poll_interval = poll_interval self.hook_params = hook_params self.impersonation_chain = impersonation_chain
[docs] def serialize(self) -> tuple[str, dict[str, Any]]: """Serialize BigQueryTableExistenceTrigger arguments and classpath.""" return ( "airflow.providers.google.cloud.triggers.bigquery.BigQueryTableExistenceTrigger", { "dataset_id": self.dataset_id, "project_id": self.project_id, "table_id": self.table_id, "gcp_conn_id": self.gcp_conn_id, "poll_interval": self.poll_interval, "hook_params": self.hook_params, "impersonation_chain": self.impersonation_chain, }, )
def _get_async_hook(self) -> BigQueryTableAsyncHook: return BigQueryTableAsyncHook( gcp_conn_id=self.gcp_conn_id, impersonation_chain=self.impersonation_chain )
[docs] async def run(self) -> AsyncIterator[TriggerEvent]: # type: ignore[override] """Will run until the table exists in the Google Big Query.""" try: while True: hook = self._get_async_hook() response = await self._table_exists( hook=hook, dataset=self.dataset_id, table_id=self.table_id, project_id=self.project_id ) if response: yield TriggerEvent({"status": "success", "message": "success"}) return await asyncio.sleep(self.poll_interval) except Exception as e: self.log.exception("Exception occurred while checking for Table existence") yield TriggerEvent({"status": "error", "message": str(e)})
async def _table_exists( self, hook: BigQueryTableAsyncHook, dataset: str, table_id: str, project_id: str ) -> bool: """ Create session, make call to BigQueryTableAsyncHook, and check for the table in Google Big Query. :param hook: BigQueryTableAsyncHook Hook class :param dataset: The name of the dataset in which to look for the table storage bucket. :param table_id: The name of the table to check the existence of. :param project_id: The Google cloud project in which to look for the table. The connection supplied to the hook must provide access to the specified project. """ async with ClientSession() as session: try: client = await hook.get_table_client( dataset=dataset, table_id=table_id, project_id=project_id, session=session ) response = await client.get() return bool(response) except ClientResponseError as err: if err.status == 404: return False raise err
[docs]class BigQueryTablePartitionExistenceTrigger(BigQueryTableExistenceTrigger): """ Initialize the BigQuery Table Partition Existence Trigger with needed parameters. :param partition_id: The name of the partition to check the existence of. :param project_id: Google Cloud Project where the job is running :param dataset_id: The dataset ID of the requested table. :param table_id: The table ID of the requested table. :param gcp_conn_id: Reference to google cloud connection id :param hook_params: params for hook :param poll_interval: polling period in seconds to check for the status :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account. (templated) """ def __init__(self, partition_id: str, **kwargs): super().__init__(**kwargs) self.partition_id = partition_id
[docs] def serialize(self) -> tuple[str, dict[str, Any]]: """Serialize BigQueryTablePartitionExistenceTrigger arguments and classpath.""" return ( "airflow.providers.google.cloud.triggers.bigquery.BigQueryTablePartitionExistenceTrigger", { "partition_id": self.partition_id, "dataset_id": self.dataset_id, "project_id": self.project_id, "table_id": self.table_id, "gcp_conn_id": self.gcp_conn_id, "poll_interval": self.poll_interval, "impersonation_chain": self.impersonation_chain, "hook_params": self.hook_params, }, )
[docs] async def run(self) -> AsyncIterator[TriggerEvent]: # type: ignore[override] """Will run until the table exists in the Google Big Query.""" hook = BigQueryAsyncHook(gcp_conn_id=self.gcp_conn_id, impersonation_chain=self.impersonation_chain) job_id = None while True: if job_id is not None: job_status = await hook.get_job_status(job_id=job_id, project_id=self.project_id) if job_status["status"] == "success": is_partition = await self._partition_exists( hook=hook, job_id=job_id, project_id=self.project_id ) if is_partition: yield TriggerEvent( { "status": "success", "message": f"Partition: {self.partition_id} in table: {self.table_id}", } ) return job_id = None elif job_status["status"] == "error": yield TriggerEvent(job_status) return self.log.info("Sleeping for %s seconds.", self.poll_interval) await asyncio.sleep(self.poll_interval) else: job_id = await hook.create_job_for_partition_get( self.dataset_id, table_id=self.table_id, project_id=self.project_id ) self.log.info("Sleeping for %s seconds.", self.poll_interval) await asyncio.sleep(self.poll_interval)
async def _partition_exists(self, hook: BigQueryAsyncHook, job_id: str | None, project_id: str): query_results = await hook.get_job_output(job_id=job_id, project_id=project_id) records = hook.get_records(query_results) if records: records = [row[0] for row in records] return self.partition_id in records

Was this entry helpful?