Source code for tests.system.google.cloud.dataflow.example_dataflow_pipeline

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

"""
Example Airflow DAG for testing Google Dataflow to create pipelines.
"""

from __future__ import annotations

import os
from datetime import datetime

from airflow.models.dag import DAG
from airflow.providers.google.cloud.operators.dataflow import (
    DataflowCreatePipelineOperator,
    DataflowDeletePipelineOperator,
    DataflowRunPipelineOperator,
)
from airflow.providers.google.cloud.operators.gcs import (
    GCSCreateBucketOperator,
    GCSDeleteBucketOperator,
    GCSSynchronizeBucketsOperator,
)
from airflow.utils.trigger_rule import TriggerRule

[docs]DAG_ID = "dataflow_pipeline"
[docs]ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID", "default")
[docs]GCP_PROJECT_ID = os.environ.get("SYSTEM_TESTS_GCP_PROJECT", "default")
[docs]GCP_LOCATION = "us-central1"
[docs]PIPELINE_NAME = f"{DAG_ID}-{ENV_ID}".replace("_", "-")
[docs]PIPELINE_JOB_NAME = f"{DAG_ID}-{ENV_ID}-job".replace("_", "-")
[docs]PIPELINE_TYPE = "PIPELINE_TYPE_BATCH"
[docs]RESOURCE_DATA_BUCKET = "airflow-system-tests-resources"
[docs]BUCKET_NAME = f"bucket_{DAG_ID}_{ENV_ID}".replace("-", "_")
[docs]FILE_NAME = "kinglear.txt"
[docs]TEMPLATE_FILE = "word-count.json"
[docs]TEMP_LOCATION = f"gs://{BUCKET_NAME}/temp"
[docs]GCS_PATH = f"gs://{BUCKET_NAME}/dataflow/{TEMPLATE_FILE}"
[docs]INPUT_FILE = f"gs://{BUCKET_NAME}/dataflow/{FILE_NAME}"
[docs]OUTPUT = f"gs://{BUCKET_NAME}/results/hello"
with DAG( DAG_ID, schedule="@once", start_date=datetime(2021, 1, 1), catchup=False, tags=["example", "dataflow", "pipelines"], ) as dag:
[docs] create_bucket = GCSCreateBucketOperator(task_id="create_bucket", bucket_name=BUCKET_NAME)
move_files_to_bucket = GCSSynchronizeBucketsOperator( task_id="move_files_to_bucket", source_bucket=RESOURCE_DATA_BUCKET, source_object="dataflow/pipelines", destination_bucket=BUCKET_NAME, destination_object="dataflow", recursive=True, ) # [START howto_operator_create_dataflow_pipeline] create_pipeline = DataflowCreatePipelineOperator( task_id="create_pipeline", project_id=GCP_PROJECT_ID, location=GCP_LOCATION, body={ "name": f"projects/{GCP_PROJECT_ID}/locations/{GCP_LOCATION}/pipelines/{PIPELINE_NAME}", "type": PIPELINE_TYPE, "workload": { "dataflowFlexTemplateRequest": { "launchParameter": { "containerSpecGcsPath": GCS_PATH, "jobName": PIPELINE_JOB_NAME, "environment": {"tempLocation": TEMP_LOCATION}, "parameters": { "inputFile": INPUT_FILE, "output": OUTPUT, }, }, "projectId": GCP_PROJECT_ID, "location": GCP_LOCATION, } }, }, ) # [END howto_operator_create_dataflow_pipeline] # [START howto_operator_run_dataflow_pipeline] run_pipeline = DataflowRunPipelineOperator( task_id="run_pipeline", pipeline_name=PIPELINE_NAME, project_id=GCP_PROJECT_ID, ) # [END howto_operator_run_dataflow_pipeline] # [START howto_operator_delete_dataflow_pipeline] delete_pipeline = DataflowDeletePipelineOperator( task_id="delete_pipeline", pipeline_name=PIPELINE_NAME, project_id=GCP_PROJECT_ID, trigger_rule=TriggerRule.ALL_DONE, ) # [END howto_operator_delete_dataflow_pipeline] delete_bucket = GCSDeleteBucketOperator( task_id="delete_bucket", bucket_name=BUCKET_NAME, trigger_rule=TriggerRule.ALL_DONE ) ( # TEST SETUP create_bucket >> move_files_to_bucket # TEST BODY >> create_pipeline >> run_pipeline # TEST TEARDOWN >> delete_pipeline >> delete_bucket ) from tests_common.test_utils.watcher import watcher # This test needs watcher in order to properly mark success/failure # when "teardown" task with trigger rule is part of the DAG list(dag.tasks) >> watcher() from tests_common.test_utils.system_tests import get_test_run # noqa: E402 # Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)

Was this entry helpful?