#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Example Airflow DAG for testing Google Dataflow to create pipelines.
"""
from __future__ import annotations
import os
from datetime import datetime, timedelta
from airflow.models.dag import DAG
from airflow.providers.google.cloud.operators.dataflow import (
DataflowCreatePipelineOperator,
DataflowDeletePipelineOperator,
DataflowStopJobOperator,
)
from airflow.providers.google.cloud.operators.pubsub import (
PubSubCreateSubscriptionOperator,
PubSubCreateTopicOperator,
PubSubDeleteSubscriptionOperator,
PubSubDeleteTopicOperator,
)
try:
from airflow.sdk import TriggerRule
except ImportError:
# Compatibility for Airflow < 3.1
from airflow.utils.trigger_rule import TriggerRule # type: ignore[no-redef,attr-defined]
[docs]
DAG_ID = "dataflow_pipeline_streaming"
[docs]
ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID", "default")
[docs]
GCP_PROJECT_ID = os.environ.get("SYSTEM_TESTS_GCP_PROJECT", "default")
[docs]
GCP_LOCATION = "europe-central2"
[docs]
PIPELINE_NAME = f"{DAG_ID}-{ENV_ID}".replace("_", "-")
[docs]
PIPELINE_JOB_NAME = f"{DAG_ID}-job".replace("_", "-")
[docs]
PIPELINE_TYPE = "PIPELINE_TYPE_STREAMING"
[docs]
RESOURCE_DATA_BUCKET = "airflow-system-tests-resources"
[docs]
BUCKET_NAME = f"bucket_{DAG_ID}_{ENV_ID}".replace("-", "_")
[docs]
SUBSCRIPTION_NAME = "taxirides-sub"
[docs]
OUTPUT_TOPIC_ID = f"df-tp-out-{ENV_ID}"
[docs]
OUTPUT_TOPIC = f"projects/{GCP_PROJECT_ID}/topics/{OUTPUT_TOPIC_ID}"
with DAG(
DAG_ID,
schedule="@once",
start_date=datetime(2025, 1, 1),
catchup=False,
tags=["example", "dataflow", "pipelines", "streaming"],
) as dag:
[docs]
create_output_pub_sub_topic = PubSubCreateTopicOperator(
task_id="create_topic", topic=OUTPUT_TOPIC_ID, project_id=GCP_PROJECT_ID, fail_if_exists=False
)
create_subscription = PubSubCreateSubscriptionOperator(
task_id="create_subscription",
project_id=INPUT_TOPIC_PROJECT_ID,
subscription_project_id=GCP_PROJECT_ID,
topic=INPUT_TOPIC_ID,
subscription=SUBSCRIPTION_NAME,
)
# [START howto_operator_create_dataflow_pipeline_streaming]
create_pipeline = DataflowCreatePipelineOperator(
task_id="create_pipeline",
project_id=GCP_PROJECT_ID,
location=GCP_LOCATION,
body={
"name": f"projects/{GCP_PROJECT_ID}/locations/{GCP_LOCATION}/pipelines/{PIPELINE_NAME}",
"type": PIPELINE_TYPE,
"workload": {
"dataflowLaunchTemplateRequest": {
"projectId": GCP_PROJECT_ID,
"location": GCP_LOCATION,
"gcsPath": "gs://dataflow-templates-europe-central2/latest/Cloud_PubSub_to_Cloud_PubSub",
"launchParameters": {
"jobName": PIPELINE_JOB_NAME,
"parameters": {
"inputSubscription": f"projects/{GCP_PROJECT_ID}/subscriptions/{SUBSCRIPTION_NAME}",
"outputTopic": OUTPUT_TOPIC,
},
},
}
},
},
)
# [END howto_operator_create_dataflow_pipeline_streaming]
delete_pipeline = DataflowDeletePipelineOperator(
task_id="delete_pipeline",
pipeline_name=PIPELINE_NAME,
project_id=GCP_PROJECT_ID,
location=GCP_LOCATION,
trigger_rule=TriggerRule.ALL_DONE,
)
delete_output_pub_sub_topic = PubSubDeleteTopicOperator(
task_id="delete_out_topic",
topic=OUTPUT_TOPIC_ID,
project_id=GCP_PROJECT_ID,
trigger_rule=TriggerRule.ALL_DONE,
)
delete_subscription = PubSubDeleteSubscriptionOperator(
task_id="delete_subscription",
project_id=GCP_PROJECT_ID,
subscription=SUBSCRIPTION_NAME,
trigger_rule=TriggerRule.ALL_DONE,
)
stop_dataflow_job = DataflowStopJobOperator(
task_id="stop_dataflow_job",
location=GCP_LOCATION,
job_name_prefix=PIPELINE_NAME[:20],
drain_pipeline=False,
retries=3,
retry_delay=timedelta(seconds=45),
)
(
# TEST SETUP
[create_output_pub_sub_topic, create_subscription]
# TEST BODY
>> create_pipeline
# TEST TEARDOWN
>> [delete_output_pub_sub_topic, delete_subscription]
>> delete_pipeline
>> stop_dataflow_job
)
from tests_common.test_utils.watcher import watcher
# This test needs watcher in order to properly mark success/failure
# when "teardown" task with trigger rule is part of the DAG
list(dag.tasks) >> watcher()
from tests_common.test_utils.system_tests import get_test_run # noqa: E402
# Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]
test_run = get_test_run(dag)