Source code for tests.system.google.cloud.dataproc.example_dataproc_batch_persistent

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Example Airflow DAG for Dataproc batch operators.
"""

from __future__ import annotations

import os
from datetime import datetime

from google.api_core.retry import Retry

from airflow.models.dag import DAG
from airflow.providers.google.cloud.operators.dataproc import (
    ClusterGenerator,
    DataprocCreateBatchOperator,
    DataprocCreateClusterOperator,
    DataprocDeleteBatchOperator,
    DataprocDeleteClusterOperator,
)
from airflow.providers.google.cloud.operators.gcs import GCSCreateBucketOperator, GCSDeleteBucketOperator
from airflow.utils.trigger_rule import TriggerRule

from providers.tests.system.google import DEFAULT_GCP_SYSTEM_TEST_PROJECT_ID

[docs]ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID", "default")
[docs]DAG_ID = "dataproc_batch_ps"
[docs]PROJECT_ID = os.environ.get("SYSTEM_TESTS_GCP_PROJECT") or DEFAULT_GCP_SYSTEM_TEST_PROJECT_ID
[docs]BUCKET_NAME = f"bucket_{DAG_ID}_{ENV_ID}".replace("-", "_")
[docs]REGION = "us-east4"
[docs]CLUSTER_NAME_BASE = f"cluster-{DAG_ID}".replace("_", "-")
[docs]CLUSTER_NAME_FULL = CLUSTER_NAME_BASE + f"-{ENV_ID}".replace("_", "-")
[docs]CLUSTER_NAME = CLUSTER_NAME_BASE if len(CLUSTER_NAME_FULL) >= 33 else CLUSTER_NAME_FULL
[docs]BATCH_ID = f"batch-{ENV_ID}-{DAG_ID}".replace("_", "-")
[docs]CLUSTER_GENERATOR_CONFIG_FOR_PHS = ClusterGenerator( project_id=PROJECT_ID, region=REGION, master_machine_type="n1-standard-4", worker_machine_type="n1-standard-4", num_workers=0, properties={ "spark:spark.history.fs.logDirectory": f"gs://{BUCKET_NAME}/logging", }, enable_component_gateway=True, ).make()
[docs]BATCH_CONFIG_WITH_PHS = { "spark_batch": { "jar_file_uris": ["file:///usr/lib/spark/examples/jars/spark-examples.jar"], "main_class": "org.apache.spark.examples.SparkPi", }, "environment_config": { "peripherals_config": { "spark_history_server_config": { "dataproc_cluster": f"projects/{PROJECT_ID}/regions/{REGION}/clusters/{CLUSTER_NAME}" } } }, }
with DAG( DAG_ID, schedule="@once", start_date=datetime(2021, 1, 1), catchup=False, tags=["example", "dataproc", "batch", "persistent"], ) as dag:
[docs] create_bucket = GCSCreateBucketOperator( task_id="create_bucket", bucket_name=BUCKET_NAME, project_id=PROJECT_ID )
# [START how_to_cloud_dataproc_create_cluster_for_persistent_history_server] create_cluster = DataprocCreateClusterOperator( task_id="create_cluster_for_phs", project_id=PROJECT_ID, cluster_config=CLUSTER_GENERATOR_CONFIG_FOR_PHS, region=REGION, cluster_name=CLUSTER_NAME, retry=Retry(maximum=100.0, initial=10.0, multiplier=1.0), num_retries_if_resource_is_not_ready=3, ) # [END how_to_cloud_dataproc_create_cluster_for_persistent_history_server] # [START how_to_cloud_dataproc_create_batch_operator_with_persistent_history_server] create_batch = DataprocCreateBatchOperator( task_id="create_batch_with_phs", project_id=PROJECT_ID, region=REGION, batch=BATCH_CONFIG_WITH_PHS, batch_id=BATCH_ID, result_retry=Retry(maximum=100.0, initial=10.0, multiplier=1.0), num_retries_if_resource_is_not_ready=3, ) # [END how_to_cloud_dataproc_create_batch_operator_with_persistent_history_server] delete_batch = DataprocDeleteBatchOperator( task_id="delete_batch", project_id=PROJECT_ID, region=REGION, batch_id=BATCH_ID, trigger_rule=TriggerRule.ALL_DONE, ) delete_cluster = DataprocDeleteClusterOperator( task_id="delete_cluster", project_id=PROJECT_ID, cluster_name=CLUSTER_NAME, region=REGION, trigger_rule=TriggerRule.ALL_DONE, ) delete_bucket = GCSDeleteBucketOperator( task_id="delete_bucket", bucket_name=BUCKET_NAME, trigger_rule=TriggerRule.ALL_DONE ) ( # TEST SETUP create_bucket >> create_cluster # TEST BODY >> create_batch # TEST TEARDOWN >> delete_batch >> delete_cluster >> delete_bucket ) from tests_common.test_utils.watcher import watcher # This test needs watcher in order to properly mark success/failure # when "teardown" task with trigger rule is part of the DAG list(dag.tasks) >> watcher() from tests_common.test_utils.system_tests import get_test_run # noqa: E402 # Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)

Was this entry helpful?