Source code for tests.system.google.cloud.ray.example_ray_job

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.


"""
Example Airflow DAG for Jobs on Ray operations.
"""

from __future__ import annotations

import os
from datetime import datetime

from airflow.exceptions import AirflowOptionalProviderFeatureException
from airflow.models.dag import DAG
from airflow.providers.google.cloud.operators.ray import (
    RayDeleteJobOperator,
    RayGetJobInfoOperator,
    RayListJobsOperator,
    RayStopJobOperator,
    RaySubmitJobOperator,
)
from airflow.providers.google.cloud.operators.vertex_ai.ray import (
    CreateRayClusterOperator,
    DeleteRayClusterOperator,
    GetRayClusterOperator,
)

try:
    from google.cloud.aiplatform.vertex_ray.util import resources
except ImportError:
    raise AirflowOptionalProviderFeatureException(
        "The ray provider is optional and requires the `google-cloud-aiplatform` package to be installed. "
    )
try:
    from airflow.sdk import TriggerRule
except ImportError:
    # Compatibility for Airflow < 3.1
    from airflow.utils.trigger_rule import TriggerRule  # type: ignore[no-redef,attr-defined]

[docs] ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID", "default")
[docs] PROJECT_ID = os.environ.get("SYSTEM_TESTS_GCP_PROJECT", "default")
[docs] DAG_ID = "ray_job_operations"
[docs] LOCATION = "us-central1"
[docs] JOB_ID = f"{DAG_ID}_{ENV_ID}".replace("-", "_")
[docs] WORKER_NODE_RESOURCES = resources.Resources( node_count=1, )
with DAG( DAG_ID, schedule="@once", start_date=datetime(2021, 1, 1), catchup=False, render_template_as_native_obj=True, tags=["example", "job", "ray"], ) as dag:
[docs] create_ray_cluster = CreateRayClusterOperator( task_id="create_ray_cluster", project_id=PROJECT_ID, location=LOCATION, worker_node_types=[WORKER_NODE_RESOURCES], python_version="3.10", ray_version="2.33", )
get_ray_cluster = GetRayClusterOperator( task_id="get_ray_cluster", project_id=PROJECT_ID, location=LOCATION, cluster_id=create_ray_cluster.output["cluster_id"], ) # [START how_to_ray_submit_job] submit_ray_job = RaySubmitJobOperator( task_id="submit_ray_job", cluster_address="{{ task_instance.xcom_pull(task_ids='get_ray_cluster')['dashboard_address'] }}", entrypoint="python3 heavy.py", runtime_env={ "working_dir": "./providers/google/tests/system/google/cloud/ray/resources", "pip": [ "ray==2.33.0", ], }, get_job_logs=False, wait_for_job_done=False, submission_id=JOB_ID, ) # [END how_to_ray_submit_job] # [START how_to_ray_get_job_info] info_ray_job = RayGetJobInfoOperator( task_id="info_ray_job", cluster_address="{{ task_instance.xcom_pull(task_ids='get_ray_cluster')['dashboard_address'] }}", job_id=JOB_ID, ) # [END how_to_ray_get_job_info] # [START how_to_ray_list_jobs] list_ray_job = RayListJobsOperator( task_id="list_ray_job", cluster_address="{{ task_instance.xcom_pull(task_ids='get_ray_cluster')['dashboard_address'] }}", ) # [END how_to_ray_list_jobs] # [START how_to_ray_stop_job] stop_ray_job = RayStopJobOperator( task_id="stop_ray_job", job_id=JOB_ID, cluster_address="{{ task_instance.xcom_pull(task_ids='get_ray_cluster')['dashboard_address'] }}", ) # [END how_to_ray_stop_job] # [START how_to_ray_delete_job] delete_ray_job = RayDeleteJobOperator( task_id="delete_ray_job", cluster_address="{{ task_instance.xcom_pull(task_ids='get_ray_cluster')['dashboard_address'] }}", job_id=JOB_ID, trigger_rule=TriggerRule.ALL_DONE, ) # [END how_to_ray_delete_job] delete_ray_cluster = DeleteRayClusterOperator( task_id="delete_ray_cluster", project_id=PROJECT_ID, location=LOCATION, cluster_id=create_ray_cluster.output["cluster_id"], trigger_rule=TriggerRule.ALL_DONE, ) ( create_ray_cluster >> get_ray_cluster >> submit_ray_job >> info_ray_job >> stop_ray_job >> list_ray_job >> delete_ray_job >> delete_ray_cluster ) # ### Everything below this line is not part of example ### # ### Just for system tests purpose ### from tests_common.test_utils.watcher import watcher # This test needs watcher in order to properly mark success/failure # when "tearDown" task with trigger rule is part of the DAG list(dag.tasks) >> watcher() from tests_common.test_utils.system_tests import get_test_run # noqa: E402 # Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs] test_run = get_test_run(dag)

Was this entry helpful?