Source code for tests.system.google.cloud.translate.example_translate_model

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Example Airflow DAG that translates text in Google Cloud Translate using V3 API version
service in the Google Cloud.
"""

from __future__ import annotations

import os
from datetime import datetime

from airflow.models.dag import DAG
from airflow.providers.google.cloud.operators.gcs import GCSCreateBucketOperator, GCSDeleteBucketOperator
from airflow.providers.google.cloud.operators.translate import (
    TranslateCreateDatasetOperator,
    TranslateCreateModelOperator,
    TranslateDeleteDatasetOperator,
    TranslateDeleteModelOperator,
    TranslateImportDataOperator,
    TranslateModelsListOperator,
    TranslateTextOperator,
)
from airflow.providers.google.cloud.transfers.gcs_to_gcs import GCSToGCSOperator
from airflow.utils.trigger_rule import TriggerRule

[docs]DAG_ID = "gcp_translate_automl_native_model"
[docs]PROJECT_ID = os.environ.get("SYSTEM_TESTS_GCP_PROJECT", "default")
[docs]ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID", "default")
[docs]REGION = "us-central1"
[docs]RESOURCE_DATA_BUCKET = "airflow-system-tests-resources"
[docs]DATA_SAMPLE_GCS_BUCKET_NAME = f"bucket_{DAG_ID}_{ENV_ID}".replace("_", "-")
[docs]DATA_FILE_NAME = "import_en-es_short.tsv"
[docs]RESOURCE_PATH = f"V3_translate/create_ds/import_data/{DATA_FILE_NAME}"
[docs]COPY_DATA_PATH = f"gs://{RESOURCE_DATA_BUCKET}/V3_translate/create_ds/import_data/{DATA_FILE_NAME}"
[docs]DST_PATH = f"translate/import/{DATA_FILE_NAME}"
[docs]DATASET_DATA_PATH = f"gs://{DATA_SAMPLE_GCS_BUCKET_NAME}/{DST_PATH}"
[docs]DATASET = { "display_name": f"op_ds_native{DAG_ID}_{ENV_ID}", "source_language_code": "es", "target_language_code": "en", }
with DAG( DAG_ID, schedule="@once", # Override to match your needs start_date=datetime(2024, 11, 1), catchup=False, tags=[ "example", "translate_model", ], ) as dag:
[docs] create_bucket = GCSCreateBucketOperator( task_id="create_bucket", bucket_name=DATA_SAMPLE_GCS_BUCKET_NAME, storage_class="REGIONAL", location=REGION, )
copy_dataset_source_tsv = GCSToGCSOperator( task_id="copy_dataset_file", source_bucket=RESOURCE_DATA_BUCKET, source_object=RESOURCE_PATH, destination_bucket=DATA_SAMPLE_GCS_BUCKET_NAME, destination_object=DST_PATH, ) create_dataset_op = TranslateCreateDatasetOperator( task_id="translate_v3_ds_create", dataset=DATASET, project_id=PROJECT_ID, location=REGION, ) import_ds_data_op = TranslateImportDataOperator( task_id="translate_v3_ds_import_data", dataset_id=create_dataset_op.output["dataset_id"], input_config={ "input_files": [{"usage": "UNASSIGNED", "gcs_source": {"input_uri": DATASET_DATA_PATH}}] }, project_id=PROJECT_ID, location=REGION, ) # [START howto_operator_translate_automl_create_model] create_model = TranslateCreateModelOperator( task_id="translate_v3_model_create", display_name=f"native_model_{ENV_ID}"[:32].replace("-", "_"), dataset_id=create_dataset_op.output["dataset_id"], project_id=PROJECT_ID, location=REGION, ) # [END howto_operator_translate_automl_create_model] # [START howto_operator_translate_automl_list_models] list_models = TranslateModelsListOperator( task_id="translate_v3_list_models", project_id=PROJECT_ID, location=REGION, ) # [END howto_operator_translate_automl_list_models] model_id = create_model.output["model_id"] translate_text_with_model = TranslateTextOperator( task_id="translate_v3_op", contents=["Hola!", "Puedes traerme una taza de café, por favor?"], # AutoML model format model=f"projects/{PROJECT_ID}/locations/{REGION}/models/{model_id}", source_language_code="es", target_language_code="en", ) # [START howto_operator_translate_automl_delete_model] delete_model = TranslateDeleteModelOperator( task_id="translate_v3_automl_delete_model", model_id=model_id, project_id=PROJECT_ID, location=REGION, ) # [END howto_operator_translate_automl_delete_model] delete_ds_op = TranslateDeleteDatasetOperator( task_id="translate_v3_ds_delete", dataset_id=create_dataset_op.output["dataset_id"], project_id=PROJECT_ID, location=REGION, ) # [END howto_operator_translate_automl_delete_dataset] delete_bucket = GCSDeleteBucketOperator( task_id="delete_bucket", bucket_name=DATA_SAMPLE_GCS_BUCKET_NAME, trigger_rule=TriggerRule.ALL_DONE, ) ( # TEST SETUP [create_bucket >> copy_dataset_source_tsv] >> create_dataset_op >> import_ds_data_op # TEST BODY >> create_model >> list_models >> translate_text_with_model >> delete_model # TEST TEARDOWN >> delete_ds_op >> delete_bucket ) from tests_common.test_utils.watcher import watcher # This test needs watcher in order to properly mark success/failure # when "tearDown" task with trigger rule is part of the DAG list(dag.tasks) >> watcher() from tests_common.test_utils.system_tests import get_test_run # noqa: E402 # Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)

Was this entry helpful?