Source code for airflow.providers.openai.operators.openai

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

from __future__ import annotations

import time
from collections.abc import Sequence
from functools import cached_property
from typing import TYPE_CHECKING, Any, Literal

from airflow.configuration import conf
from airflow.models import BaseOperator
from airflow.providers.openai.exceptions import OpenAIBatchJobException
from airflow.providers.openai.hooks.openai import OpenAIHook
from airflow.providers.openai.triggers.openai import OpenAIBatchTrigger

if TYPE_CHECKING:
    from airflow.utils.context import Context


[docs]class OpenAIEmbeddingOperator(BaseOperator): """ Operator that accepts input text to generate OpenAI embeddings using the specified model. :param conn_id: The OpenAI connection ID to use. :param input_text: The text to generate OpenAI embeddings for. This can be a string, a list of strings, a list of integers, or a list of lists of integers. :param model: The OpenAI model to be used for generating the embeddings. :param embedding_kwargs: Additional keyword arguments to pass to the OpenAI `create_embeddings` method. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:OpenAIEmbeddingOperator` For possible options for `embedding_kwargs`, see: https://platform.openai.com/docs/api-reference/embeddings/create """
[docs] template_fields: Sequence[str] = ("input_text",)
def __init__( self, conn_id: str, input_text: str | list[str] | list[int] | list[list[int]], model: str = "text-embedding-ada-002", embedding_kwargs: dict | None = None, **kwargs: Any, ): super().__init__(**kwargs) self.conn_id = conn_id self.input_text = input_text self.model = model self.embedding_kwargs = embedding_kwargs or {} @cached_property
[docs] def hook(self) -> OpenAIHook: """Return an instance of the OpenAIHook.""" return OpenAIHook(conn_id=self.conn_id)
[docs] def execute(self, context: Context) -> list[float]: if not self.input_text or not isinstance(self.input_text, (str, list)): raise ValueError( "The 'input_text' must be a non-empty string, list of strings, list of integers, or list of lists of integers." ) self.log.info("Generating embeddings for the input text of length: %d", len(self.input_text)) embeddings = self.hook.create_embeddings(self.input_text, model=self.model, **self.embedding_kwargs) self.log.info("Generated embeddings for %d items", len(embeddings)) return embeddings
[docs]class OpenAITriggerBatchOperator(BaseOperator): """ Operator that triggers an OpenAI Batch API endpoint and waits for the batch to complete. :param file_id: Required. The ID of the batch file to trigger. :param endpoint: Required. The OpenAI Batch API endpoint to trigger. :param conn_id: Optional. The OpenAI connection ID to use. Defaults to 'openai_default'. :param deferrable: Optional. Run operator in the deferrable mode. :param wait_seconds: Optional. Number of seconds between checks. Only used when ``deferrable`` is False. Defaults to 3 seconds. :param timeout: Optional. The amount of time, in seconds, to wait for the request to complete. Only used when ``deferrable`` is False. Defaults to 24 hour, which is the SLA for OpenAI Batch API. :param wait_for_completion: Optional. Whether to wait for the batch to complete. If set to False, the operator will return immediately after triggering the batch. Defaults to True. .. seealso:: For more information on how to use this operator, please take a look at the guide: :ref:`howto/operator:OpenAITriggerBatchOperator` """
[docs] template_fields: Sequence[str] = ("file_id",)
def __init__( self, file_id: str, endpoint: Literal["/v1/chat/completions", "/v1/embeddings", "/v1/completions"], conn_id: str = OpenAIHook.default_conn_name, deferrable: bool = conf.getboolean("operators", "default_deferrable", fallback=False), wait_seconds: float = 3, timeout: float = 24 * 60 * 60, wait_for_completion: bool = True, **kwargs: Any, ): super().__init__(**kwargs) self.conn_id = conn_id self.file_id = file_id self.endpoint = endpoint self.deferrable = deferrable self.wait_seconds = wait_seconds self.timeout = timeout self.wait_for_completion = wait_for_completion self.batch_id: str | None = None @cached_property
[docs] def hook(self) -> OpenAIHook: """Return an instance of the OpenAIHook.""" return OpenAIHook(conn_id=self.conn_id)
[docs] def execute(self, context: Context) -> str: batch = self.hook.create_batch(file_id=self.file_id, endpoint=self.endpoint) self.batch_id = batch.id if self.wait_for_completion: if self.deferrable: self.defer( timeout=self.execution_timeout, trigger=OpenAIBatchTrigger( conn_id=self.conn_id, batch_id=self.batch_id, poll_interval=60, end_time=time.time() + self.timeout, ), method_name="execute_complete", ) else: self.log.info("Waiting for batch %s to complete", self.batch_id) self.hook.wait_for_batch(self.batch_id, wait_seconds=self.wait_seconds, timeout=self.timeout) return self.batch_id
[docs] def execute_complete(self, context: Context, event: Any = None) -> str: """ Invoke this callback when the trigger fires; return immediately. Relies on trigger to throw an exception, otherwise it assumes execution was successful. """ if event["status"] == "error": raise OpenAIBatchJobException(event["message"]) self.log.info("%s completed successfully.", self.task_id) return event["batch_id"]
[docs] def on_kill(self) -> None: """Cancel the batch if task is cancelled.""" if self.batch_id: self.log.info("on_kill: cancel the OpenAI Batch %s", self.batch_id) self.hook.cancel_batch(self.batch_id)

Was this entry helpful?