Source code for airflow.providers.openlineage.extractors.manager
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations
from typing import TYPE_CHECKING, Iterator
from airflow.providers.common.compat.openlineage.utils.utils import (
translate_airflow_asset,
)
from airflow.providers.openlineage import conf
from airflow.providers.openlineage.extractors import BaseExtractor, OperatorLineage
from airflow.providers.openlineage.extractors.base import DefaultExtractor
from airflow.providers.openlineage.extractors.bash import BashExtractor
from airflow.providers.openlineage.extractors.python import PythonExtractor
from airflow.providers.openlineage.utils.utils import (
get_unknown_source_attribute_run_facet,
try_import_from_string,
)
from airflow.utils.log.logging_mixin import LoggingMixin
if TYPE_CHECKING:
from openlineage.client.event_v2 import Dataset
from airflow.lineage.entities import Table
from airflow.models import Operator
def _iter_extractor_types() -> Iterator[type[BaseExtractor]]:
if PythonExtractor is not None:
yield PythonExtractor
if BashExtractor is not None:
yield BashExtractor
[docs]class ExtractorManager(LoggingMixin):
"""Class abstracting management of custom extractors."""
def __init__(self):
super().__init__()
self.extractors: dict[str, type[BaseExtractor]] = {}
self.default_extractor = DefaultExtractor
# Built-in Extractors like Bash and Python
for extractor in _iter_extractor_types():
for operator_class in extractor.get_operator_classnames():
self.extractors[operator_class] = extractor
for extractor_path in conf.custom_extractors():
extractor: type[BaseExtractor] | None = try_import_from_string(extractor_path)
if not extractor:
self.log.warning(
"OpenLineage is unable to import custom extractor `%s`; will ignore it.",
extractor_path,
)
continue
for operator_class in extractor.get_operator_classnames():
if operator_class in self.extractors:
self.log.warning(
"Duplicate OpenLineage custom extractor found for `%s`. "
"`%s` will be used instead of `%s`",
operator_class,
extractor_path,
self.extractors[operator_class],
)
self.extractors[operator_class] = extractor
self.log.debug(
"Registered custom OpenLineage extractor `%s` for class `%s`",
extractor_path,
operator_class,
)
[docs] def add_extractor(self, operator_class: str, extractor: type[BaseExtractor]):
self.extractors[operator_class] = extractor
[docs] def extract_metadata(self, dagrun, task, complete: bool = False, task_instance=None) -> OperatorLineage:
extractor = self._get_extractor(task)
task_info = (
f"task_type={task.task_type} "
f"airflow_dag_id={task.dag_id} "
f"task_id={task.task_id} "
f"airflow_run_id={dagrun.run_id} "
)
if extractor:
# Extracting advanced metadata is only possible when extractor for particular operator
# is defined. Without it, we can't extract any input or output data.
try:
self.log.debug(
"Using extractor %s %s",
extractor.__class__.__name__,
str(task_info),
)
if complete:
task_metadata = extractor.extract_on_complete(task_instance)
else:
task_metadata = extractor.extract()
self.log.debug(
"Found task metadata for operation %s: %s",
task.task_id,
str(task_metadata),
)
task_metadata = self.validate_task_metadata(task_metadata)
if task_metadata:
if (not task_metadata.inputs) and (not task_metadata.outputs):
if (hook_lineage := self.get_hook_lineage()) is not None:
inputs, outputs = hook_lineage
task_metadata.inputs = inputs
task_metadata.outputs = outputs
else:
self.extract_inlets_and_outlets(task_metadata, task.inlets, task.outlets)
return task_metadata
except Exception as e:
self.log.warning(
"Failed to extract metadata using found extractor %s - %s %s",
extractor,
e,
task_info,
)
elif (hook_lineage := self.get_hook_lineage()) is not None:
inputs, outputs = hook_lineage
task_metadata = OperatorLineage(inputs=inputs, outputs=outputs)
return task_metadata
else:
self.log.debug("Unable to find an extractor %s", task_info)
# Only include the unkonwnSourceAttribute facet if there is no extractor
task_metadata = OperatorLineage(
run_facets=get_unknown_source_attribute_run_facet(task=task),
)
inlets = task.get_inlet_defs()
outlets = task.get_outlet_defs()
self.extract_inlets_and_outlets(task_metadata, inlets, outlets)
return task_metadata
return OperatorLineage()
[docs] def get_extractor_class(self, task: Operator) -> type[BaseExtractor] | None:
if task.task_type in self.extractors:
return self.extractors[task.task_type]
def method_exists(method_name):
method = getattr(task, method_name, None)
if method:
return callable(method)
if method_exists("get_openlineage_facets_on_start") or method_exists(
"get_openlineage_facets_on_complete"
):
return self.default_extractor
return None
def _get_extractor(self, task: Operator) -> BaseExtractor | None:
# TODO: Re-enable in Extractor PR
# self.instantiate_abstract_extractors(task)
extractor = self.get_extractor_class(task)
self.log.debug("extractor for %s is %s", task.task_type, extractor)
if extractor:
return extractor(task)
return None
[docs] def extract_inlets_and_outlets(
self,
task_metadata: OperatorLineage,
inlets: list,
outlets: list,
):
if inlets or outlets:
self.log.debug("Manually extracting lineage metadata from inlets and outlets")
for i in inlets:
d = self.convert_to_ol_dataset(i)
if d:
task_metadata.inputs.append(d)
for o in outlets:
d = self.convert_to_ol_dataset(o)
if d:
task_metadata.outputs.append(d)
[docs] def get_hook_lineage(self) -> tuple[list[Dataset], list[Dataset]] | None:
try:
from airflow.providers.common.compat.lineage.hook import (
get_hook_lineage_collector,
)
except ImportError:
return None
if not get_hook_lineage_collector().has_collected:
return None
return (
[
asset
for asset_info in get_hook_lineage_collector().collected_assets.inputs
if (asset := translate_airflow_asset(asset_info.asset, asset_info.context)) is not None
],
[
asset
for asset_info in get_hook_lineage_collector().collected_assets.outputs
if (asset := translate_airflow_asset(asset_info.asset, asset_info.context)) is not None
],
)
@staticmethod
[docs] def convert_to_ol_dataset_from_object_storage_uri(uri: str) -> Dataset | None:
from urllib.parse import urlparse
from openlineage.client.event_v2 import Dataset
if "/" not in uri:
return None
try:
scheme, netloc, path, params, _, _ = urlparse(uri)
except Exception:
return None
common_schemas = {
"s3": "s3",
"gs": "gs",
"gcs": "gs",
"hdfs": "hdfs",
"file": "file",
}
for found, final in common_schemas.items():
if scheme.startswith(found):
return Dataset(namespace=f"{final}://{netloc}", name=path.lstrip("/"))
return Dataset(namespace=scheme, name=f"{netloc}{path}")
@staticmethod
[docs] def convert_to_ol_dataset_from_table(table: Table) -> Dataset:
from openlineage.client.event_v2 import Dataset
from openlineage.client.facet_v2 import (
DatasetFacet,
documentation_dataset,
ownership_dataset,
schema_dataset,
)
facets: dict[str, DatasetFacet] = {}
if table.columns:
facets["schema"] = schema_dataset.SchemaDatasetFacet(
fields=[
schema_dataset.SchemaDatasetFacetFields(
name=column.name,
type=column.data_type,
description=column.description,
)
for column in table.columns
]
)
if table.owners:
facets["ownership"] = ownership_dataset.OwnershipDatasetFacet(
owners=[
ownership_dataset.Owner(
# f.e. "user:John Doe <jdoe@company.com>" or just "user:<jdoe@company.com>"
name=f"user:"
f"{user.first_name + ' ' if user.first_name else ''}"
f"{user.last_name + ' ' if user.last_name else ''}"
f"<{user.email}>",
type="",
)
for user in table.owners
]
)
if table.description:
facets["documentation"] = documentation_dataset.DocumentationDatasetFacet(
description=table.description
)
return Dataset(
namespace=f"{table.cluster}",
name=f"{table.database}.{table.name}",
facets=facets,
)
@staticmethod
[docs] def convert_to_ol_dataset(obj) -> Dataset | None:
from openlineage.client.event_v2 import Dataset
from airflow.lineage.entities import File, Table
if isinstance(obj, Dataset):
return obj
elif isinstance(obj, Table):
return ExtractorManager.convert_to_ol_dataset_from_table(obj)
elif isinstance(obj, File):
return ExtractorManager.convert_to_ol_dataset_from_object_storage_uri(obj.url)
else:
return None
[docs] def validate_task_metadata(self, task_metadata) -> OperatorLineage | None:
try:
return OperatorLineage(
inputs=task_metadata.inputs,
outputs=task_metadata.outputs,
run_facets=task_metadata.run_facets,
job_facets=task_metadata.job_facets,
)
except AttributeError:
self.log.warning("Extractor returns non-valid metadata: %s", task_metadata)
return None