Source code for airflow.providers.openlineage.plugins.adapter

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations

import traceback
from contextlib import ExitStack
from typing import TYPE_CHECKING

import yaml
from openlineage.client import OpenLineageClient, set_producer
from openlineage.client.event_v2 import Job, Run, RunEvent, RunState
from openlineage.client.facet_v2 import (
    JobFacet,
    RunFacet,
    documentation_job,
    error_message_run,
    job_type_job,
    nominal_time_run,
    ownership_job,
    parent_run,
    source_code_location_job,
)
from openlineage.client.uuid import generate_static_uuid

from airflow.providers.openlineage import __version__ as OPENLINEAGE_PROVIDER_VERSION, conf
from airflow.providers.openlineage.utils.utils import (
    OpenLineageRedactor,
    get_airflow_debug_facet,
    get_airflow_state_run_facet,
    get_processing_engine_facet,
)
from airflow.stats import Stats
from airflow.utils.log.logging_mixin import LoggingMixin

if TYPE_CHECKING:
    from datetime import datetime

    from airflow.providers.openlineage.extractors import OperatorLineage
    from airflow.utils.log.secrets_masker import SecretsMasker
    from airflow.utils.state import DagRunState

_PRODUCER = f"https://github.com/apache/airflow/tree/providers-openlineage/{OPENLINEAGE_PROVIDER_VERSION}"

set_producer(_PRODUCER)

# https://openlineage.io/docs/spec/facets/job-facets/job-type
# They must be set after the `set_producer(_PRODUCER)`
# otherwise the `JobTypeJobFacet._producer` will be set with the default value
_JOB_TYPE_DAG = job_type_job.JobTypeJobFacet(jobType="DAG", integration="AIRFLOW", processingType="BATCH")
_JOB_TYPE_TASK = job_type_job.JobTypeJobFacet(jobType="TASK", integration="AIRFLOW", processingType="BATCH")


[docs]class OpenLineageAdapter(LoggingMixin): """Translate Airflow metadata to OpenLineage events instead of creating them from Airflow code.""" def __init__(self, client: OpenLineageClient | None = None, secrets_masker: SecretsMasker | None = None): super().__init__() self._client = client if not secrets_masker: from airflow.utils.log.secrets_masker import _secrets_masker secrets_masker = _secrets_masker() self._redacter = OpenLineageRedactor.from_masker(secrets_masker)
[docs] def get_or_create_openlineage_client(self) -> OpenLineageClient: if not self._client: config = self.get_openlineage_config() if config: self.log.debug( "OpenLineage configuration found. Transport type: `%s`", config.get("type", "no type provided"), ) self._client = OpenLineageClient(config=config) # type: ignore[call-arg] else: self.log.debug( "OpenLineage configuration not found directly in Airflow. " "Looking for legacy environment configuration. " ) self._client = OpenLineageClient() return self._client
[docs] def get_openlineage_config(self) -> dict | None: # First, try to read from YAML file openlineage_config_path = conf.config_path(check_legacy_env_var=False) if openlineage_config_path: config = self._read_yaml_config(openlineage_config_path) return config else: self.log.debug("OpenLineage config_path configuration not found.") # Second, try to get transport config transport_config = conf.transport() if not transport_config: self.log.debug("OpenLineage transport configuration not found.") return None return {"transport": transport_config}
@staticmethod def _read_yaml_config(path: str) -> dict | None: with open(path) as config_file: return yaml.safe_load(config_file) @staticmethod
[docs] def build_dag_run_id(dag_id: str, logical_date: datetime, clear_number: int) -> str: return str( generate_static_uuid( instant=logical_date, data=f"{conf.namespace()}.{dag_id}.{clear_number}".encode(), ) )
@staticmethod
[docs] def build_task_instance_run_id( dag_id: str, task_id: str, try_number: int, logical_date: datetime, map_index: int, ): return str( generate_static_uuid( instant=logical_date, data=f"{conf.namespace()}.{dag_id}.{task_id}.{try_number}.{map_index}".encode(), ) )
[docs] def emit(self, event: RunEvent): """ Emit OpenLineage event. :param event: Event to be emitted. :return: Redacted Event. """ if not self._client: self._client = self.get_or_create_openlineage_client() redacted_event: RunEvent = self._redacter.redact(event, max_depth=20) # type: ignore[assignment] event_type = event.eventType.value.lower() if event.eventType else "" transport_type = f"{self._client.transport.kind}".lower() try: with ExitStack() as stack: stack.enter_context(Stats.timer(f"ol.emit.attempts.{event_type}.{transport_type}")) stack.enter_context(Stats.timer("ol.emit.attempts")) self._client.emit(redacted_event) self.log.debug("Successfully emitted OpenLineage event of id %s", event.run.runId) except Exception: Stats.incr("ol.emit.failed") self.log.warning("Failed to emit OpenLineage event of id %s", event.run.runId) self.log.debug("OpenLineage emission failure: %s", exc_info=True) return redacted_event
[docs] def start_task( self, run_id: str, job_name: str, job_description: str, event_time: str, parent_job_name: str | None, parent_run_id: str | None, code_location: str | None, nominal_start_time: str | None, nominal_end_time: str | None, owners: list[str], task: OperatorLineage | None, run_facets: dict[str, RunFacet] | None = None, ) -> RunEvent: """ Emit openlineage event of type START. :param run_id: globally unique identifier of task in dag run :param job_name: globally unique identifier of task in dag :param job_description: user provided description of job :param event_time: :param parent_job_name: the name of the parent job (typically the DAG, but possibly a task group) :param parent_run_id: identifier of job spawning this task :param code_location: file path or URL of DAG file :param nominal_start_time: scheduled time of dag run :param nominal_end_time: following schedule of dag run :param owners: list of owners of DAG :param task: metadata container with information extracted from operator :param run_facets: custom run facets """ run_facets = run_facets or {} if task: run_facets = {**task.run_facets, **run_facets} run_facets = {**run_facets, **get_processing_engine_facet()} # type: ignore event = RunEvent( eventType=RunState.START, eventTime=event_time, run=self._build_run( run_id=run_id, job_name=job_name, parent_job_name=parent_job_name, parent_run_id=parent_run_id, nominal_start_time=nominal_start_time, nominal_end_time=nominal_end_time, run_facets=run_facets, ), job=self._build_job( job_name=job_name, job_type=_JOB_TYPE_TASK, job_description=job_description, code_location=code_location, owners=owners, job_facets=task.job_facets if task else None, ), inputs=task.inputs if task else [], outputs=task.outputs if task else [], producer=_PRODUCER, ) return self.emit(event)
[docs] def complete_task( self, run_id: str, job_name: str, parent_job_name: str | None, parent_run_id: str | None, end_time: str, task: OperatorLineage, run_facets: dict[str, RunFacet] | None = None, ) -> RunEvent: """ Emit openlineage event of type COMPLETE. :param run_id: globally unique identifier of task in dag run :param job_name: globally unique identifier of task between dags :param parent_job_name: the name of the parent job (typically the DAG, but possibly a task group) :param parent_run_id: identifier of job spawning this task :param end_time: time of task completion :param task: metadata container with information extracted from operator :param run_facets: additional run facets """ run_facets = run_facets or {} if task: run_facets = {**task.run_facets, **run_facets} event = RunEvent( eventType=RunState.COMPLETE, eventTime=end_time, run=self._build_run( run_id=run_id, job_name=job_name, parent_job_name=parent_job_name, parent_run_id=parent_run_id, run_facets=run_facets, ), job=self._build_job(job_name, job_type=_JOB_TYPE_TASK, job_facets=task.job_facets), inputs=task.inputs, outputs=task.outputs, producer=_PRODUCER, ) return self.emit(event)
[docs] def fail_task( self, run_id: str, job_name: str, parent_job_name: str | None, parent_run_id: str | None, end_time: str, task: OperatorLineage, error: str | BaseException | None = None, run_facets: dict[str, RunFacet] | None = None, ) -> RunEvent: """ Emit openlineage event of type FAIL. :param run_id: globally unique identifier of task in dag run :param job_name: globally unique identifier of task between dags :param parent_job_name: the name of the parent job (typically the DAG, but possibly a task group) :param parent_run_id: identifier of job spawning this task :param end_time: time of task completion :param task: metadata container with information extracted from operator :param run_facets: custom run facets :param error: error :param run_facets: additional run facets """ run_facets = run_facets or {} if task: run_facets = {**task.run_facets, **run_facets} if error: stack_trace = None if isinstance(error, BaseException) and error.__traceback__: import traceback stack_trace = "".join(traceback.format_exception(type(error), error, error.__traceback__)) run_facets["errorMessage"] = error_message_run.ErrorMessageRunFacet( message=str(error), programmingLanguage="python", stackTrace=stack_trace ) event = RunEvent( eventType=RunState.FAIL, eventTime=end_time, run=self._build_run( run_id=run_id, job_name=job_name, parent_job_name=parent_job_name, parent_run_id=parent_run_id, run_facets=run_facets, ), job=self._build_job(job_name, job_type=_JOB_TYPE_TASK, job_facets=task.job_facets), inputs=task.inputs, outputs=task.outputs, producer=_PRODUCER, ) return self.emit(event)
[docs] def dag_started( self, dag_id: str, logical_date: datetime, start_date: datetime, nominal_start_time: str, nominal_end_time: str, owners: list[str], run_facets: dict[str, RunFacet], clear_number: int, description: str | None = None, job_facets: dict[str, JobFacet] | None = None, # Custom job facets ): try: event = RunEvent( eventType=RunState.START, eventTime=start_date.isoformat(), job=self._build_job( job_name=dag_id, job_type=_JOB_TYPE_DAG, job_description=description, owners=owners, job_facets=job_facets, ), run=self._build_run( run_id=self.build_dag_run_id( dag_id=dag_id, logical_date=logical_date, clear_number=clear_number ), job_name=dag_id, nominal_start_time=nominal_start_time, nominal_end_time=nominal_end_time, run_facets={**run_facets, **get_airflow_debug_facet(), **get_processing_engine_facet()}, ), inputs=[], outputs=[], producer=_PRODUCER, ) self.emit(event) except BaseException: # Catch all exceptions to prevent ProcessPoolExecutor from silently swallowing them. # This ensures that any unexpected exceptions are logged for debugging purposes. # This part cannot be wrapped to deduplicate code, otherwise the method cannot be pickled in multiprocessing. self.log.warning("Failed to emit DAG started event: \n %s", traceback.format_exc())
[docs] def dag_success( self, dag_id: str, run_id: str, end_date: datetime, logical_date: datetime, clear_number: int, dag_run_state: DagRunState, task_ids: list[str], ): try: event = RunEvent( eventType=RunState.COMPLETE, eventTime=end_date.isoformat(), job=self._build_job(job_name=dag_id, job_type=_JOB_TYPE_DAG), run=Run( runId=self.build_dag_run_id( dag_id=dag_id, logical_date=logical_date, clear_number=clear_number ), facets={ **get_airflow_state_run_facet(dag_id, run_id, task_ids, dag_run_state), **get_airflow_debug_facet(), }, ), inputs=[], outputs=[], producer=_PRODUCER, ) self.emit(event) except BaseException: # Catch all exceptions to prevent ProcessPoolExecutor from silently swallowing them. # This ensures that any unexpected exceptions are logged for debugging purposes. # This part cannot be wrapped to deduplicate code, otherwise the method cannot be pickled in multiprocessing. self.log.warning("Failed to emit DAG success event: \n %s", traceback.format_exc())
[docs] def dag_failed( self, dag_id: str, run_id: str, end_date: datetime, logical_date: datetime, clear_number: int, dag_run_state: DagRunState, task_ids: list[str], msg: str, ): try: event = RunEvent( eventType=RunState.FAIL, eventTime=end_date.isoformat(), job=self._build_job(job_name=dag_id, job_type=_JOB_TYPE_DAG), run=Run( runId=self.build_dag_run_id( dag_id=dag_id, logical_date=logical_date, clear_number=clear_number, ), facets={ "errorMessage": error_message_run.ErrorMessageRunFacet( message=msg, programmingLanguage="python" ), **get_airflow_state_run_facet(dag_id, run_id, task_ids, dag_run_state), **get_airflow_debug_facet(), }, ), inputs=[], outputs=[], producer=_PRODUCER, ) self.emit(event) except BaseException: # Catch all exceptions to prevent ProcessPoolExecutor from silently swallowing them. # This ensures that any unexpected exceptions are logged for debugging purposes. # This part cannot be wrapped to deduplicate code, otherwise the method cannot be pickled in multiprocessing. self.log.warning("Failed to emit DAG failed event: \n %s", traceback.format_exc())
@staticmethod def _build_run( run_id: str, job_name: str, parent_job_name: str | None = None, parent_run_id: str | None = None, nominal_start_time: str | None = None, nominal_end_time: str | None = None, run_facets: dict[str, RunFacet] | None = None, ) -> Run: facets: dict[str, RunFacet] = {} if nominal_start_time: facets.update( {"nominalTime": nominal_time_run.NominalTimeRunFacet(nominal_start_time, nominal_end_time)} ) if parent_run_id: parent_run_facet = parent_run.ParentRunFacet( run=parent_run.Run(runId=parent_run_id), job=parent_run.Job(namespace=conf.namespace(), name=parent_job_name or job_name), ) facets.update({"parent": parent_run_facet}) if run_facets: facets.update(run_facets) return Run(run_id, facets) @staticmethod def _build_job( job_name: str, job_type: job_type_job.JobTypeJobFacet, job_description: str | None = None, code_location: str | None = None, owners: list[str] | None = None, job_facets: dict[str, JobFacet] | None = None, ): facets: dict[str, JobFacet] = {} if job_description: facets.update( {"documentation": documentation_job.DocumentationJobFacet(description=job_description)} ) if code_location: facets.update( { "sourceCodeLocation": source_code_location_job.SourceCodeLocationJobFacet( "", url=code_location ) } ) if owners: facets.update( { "ownership": ownership_job.OwnershipJobFacet( owners=[ownership_job.Owner(name=owner) for owner in owners] ) } ) if job_facets: facets = {**facets, **job_facets} facets.update({"jobType": job_type}) return Job(conf.namespace(), job_name, facets)

Was this entry helpful?