Source code for airflow.providers.pinecone.operators.pinecone

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

from __future__ import annotations

from collections.abc import Sequence
from functools import cached_property
from typing import TYPE_CHECKING, Any

from airflow.models import BaseOperator
from airflow.providers.pinecone.hooks.pinecone import PineconeHook
from airflow.utils.context import Context

if TYPE_CHECKING:
    from pinecone import Vector

    from airflow.utils.context import Context


[docs]class PineconeIngestOperator(BaseOperator): """ Ingest vector embeddings into Pinecone. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:PineconeIngestOperator` :param conn_id: The connection id to use when connecting to Pinecone. :param index_name: Name of the Pinecone index. :param input_vectors: Data to be ingested, in the form of a list of vectors, list of tuples, or list of dictionaries. :param namespace: The namespace to write to. If not specified, the default namespace is used. :param batch_size: The number of vectors to upsert in each batch. :param upsert_kwargs: .. seealso:: https://docs.pinecone.io/reference/upsert """
[docs] template_fields: Sequence[str] = ("index_name", "input_vectors", "namespace")
def __init__( self, *, conn_id: str = PineconeHook.default_conn_name, index_name: str, input_vectors: list[Vector] | list[tuple] | list[dict], namespace: str = "", batch_size: int | None = None, upsert_kwargs: dict | None = None, **kwargs: Any, ) -> None: self.upsert_kwargs = upsert_kwargs or {} super().__init__(**kwargs) self.conn_id = conn_id self.index_name = index_name self.namespace = namespace self.batch_size = batch_size self.input_vectors = input_vectors @cached_property
[docs] def hook(self) -> PineconeHook: """Return an instance of the PineconeHook.""" return PineconeHook(conn_id=self.conn_id)
[docs] def execute(self, context: Context) -> None: """Ingest data into Pinecone using the PineconeHook.""" self.hook.upsert( index_name=self.index_name, vectors=self.input_vectors, namespace=self.namespace, batch_size=self.batch_size, **self.upsert_kwargs, ) self.log.info("Successfully ingested data into Pinecone index %s.", self.index_name)
[docs]class CreatePodIndexOperator(BaseOperator): """ Create a pod based index in Pinecone. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:CreatePodIndexOperator` :param conn_id: The connection id to use when connecting to Pinecone. :param index_name: Name of the Pinecone index. :param dimension: The dimension of the vectors to be indexed. :param environment: The environment to use when creating the index. :param replicas: The number of replicas to use. :param shards: The number of shards to use. :param pods: The number of pods to use. :param pod_type: The type of pod to use. Defaults to p1.x1 :param metadata_config: The metadata configuration to use. :param source_collection: The source collection to use. :param metric: The metric to use. Defaults to cosine. :param timeout: The timeout to use. """ def __init__( self, *, conn_id: str = PineconeHook.default_conn_name, index_name: str, dimension: int, environment: str | None = None, replicas: int | None = None, shards: int | None = None, pods: int | None = None, pod_type: str = "p1.x1", metadata_config: dict | None = None, source_collection: str | None = None, metric: str = "cosine", timeout: int | None = None, **kwargs: Any, ): super().__init__(**kwargs) self.conn_id = conn_id self.index_name = index_name self.dimension = dimension self.environment = environment self.replicas = replicas self.shards = shards self.pods = pods self.pod_type = pod_type self.metadata_config = metadata_config self.source_collection = source_collection self.metric = metric self.timeout = timeout @cached_property
[docs] def hook(self) -> PineconeHook: return PineconeHook(conn_id=self.conn_id, environment=self.environment)
[docs] def execute(self, context: Context) -> None: pod_spec_obj = self.hook.get_pod_spec_obj( replicas=self.replicas, shards=self.shards, pods=self.pods, pod_type=self.pod_type, metadata_config=self.metadata_config, source_collection=self.source_collection, environment=self.environment, ) self.hook.create_index( index_name=self.index_name, dimension=self.dimension, spec=pod_spec_obj, metric=self.metric, timeout=self.timeout, )
[docs]class CreateServerlessIndexOperator(BaseOperator): """ Create a serverless index in Pinecone. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:CreateServerlessIndexOperator` :param conn_id: The connection id to use when connecting to Pinecone. :param index_name: Name of the Pinecone index. :param dimension: The dimension of the vectors to be indexed. :param cloud: The cloud to use when creating the index. :param region: The region to use when creating the index. :param metric: The metric to use. :param timeout: The timeout to use. """ def __init__( self, *, conn_id: str = PineconeHook.default_conn_name, index_name: str, dimension: int, cloud: str, region: str | None = None, metric: str | None = None, timeout: int | None = None, **kwargs: Any, ) -> None: super().__init__(**kwargs) self.conn_id = conn_id self.index_name = index_name self.dimension = dimension self.cloud = cloud self.region = region self.metric = metric self.timeout = timeout @cached_property
[docs] def hook(self) -> PineconeHook: return PineconeHook(conn_id=self.conn_id, region=self.region)
[docs] def execute(self, context: Context) -> None: serverless_spec_obj = self.hook.get_serverless_spec_obj(cloud=self.cloud, region=self.region) self.hook.create_index( index_name=self.index_name, dimension=self.dimension, spec=serverless_spec_obj, metric=self.metric, timeout=self.timeout, )

Was this entry helpful?