Source code for airflow.providers.slack.transfers.sql_to_slack_webhook

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations

from collections.abc import Iterable, Mapping, Sequence
from typing import TYPE_CHECKING, Any

from tabulate import tabulate

from airflow.exceptions import AirflowException
from airflow.providers.slack.hooks.slack_webhook import SlackWebhookHook
from airflow.providers.slack.transfers.base_sql_to_slack import BaseSqlToSlackOperator

if TYPE_CHECKING:
    from airflow.utils.context import Context


[docs]class SqlToSlackWebhookOperator(BaseSqlToSlackOperator): """ Executes an SQL statement in a given SQL connection and sends the results to Slack Incoming Webhook. The results of the query are rendered into the 'slack_message' parameter as a Pandas dataframe using a JINJA variable called '{{ results_df }}'. The 'results_df' variable name can be changed by specifying a different 'results_df_name' parameter. The Tabulate library is added to the JINJA environment as a filter to allow the dataframe to be rendered nicely. For example, set 'slack_message' to {{ results_df | tabulate(tablefmt="pretty", headers="keys") }} to send the results to Slack as an ascii rendered table. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:SqlToSlackWebhookOperator` .. note:: You cannot override the default channel (chosen by the user who installed your app), Instead, these values will always inherit from the associated Slack App configuration (`link <https://api.slack.com/messaging/webhooks#advanced_message_formatting>`_). It is possible to change this values only in `Legacy Slack Integration Incoming Webhook <https://api.slack.com/legacy/custom-integrations/messaging/webhooks#legacy-customizations>`_. .. warning:: This hook intend to use `Slack Incoming Webhook` connection and might not work correctly with `Slack API` connection. :param sql: The SQL query to be executed (templated) :param slack_message: The templated Slack message to send with the data returned from the SQL connection. You can use the default JINJA variable {{ results_df }} to access the pandas dataframe containing the SQL results :param sql_conn_id: reference to a specific database. :param sql_hook_params: Extra config params to be passed to the underlying hook. Should match the desired hook constructor params. :param slack_webhook_conn_id: :ref:`Slack Incoming Webhook <howto/connection:slack>` connection id that has Incoming Webhook token in the password field. :param slack_channel: The channel to send message. :param results_df_name: The name of the JINJA template's dataframe variable, default is 'results_df' :param parameters: The parameters to pass to the SQL query """
[docs] template_fields: Sequence[str] = ("sql", "slack_message")
[docs] template_ext: Sequence[str] = (".sql", ".jinja", ".j2")
[docs] template_fields_renderers = {"sql": "sql", "slack_message": "jinja"}
[docs] times_rendered = 0
def __init__( self, *, sql: str, sql_conn_id: str, slack_webhook_conn_id: str | None = None, sql_hook_params: dict | None = None, slack_channel: str | None = None, slack_message: str, results_df_name: str = "results_df", parameters: list | tuple | Mapping[str, Any] | None = None, **kwargs, ) -> None: if not slack_webhook_conn_id: raise ValueError("Got an empty `slack_webhook_conn_id` value.") super().__init__( sql=sql, sql_conn_id=sql_conn_id, sql_hook_params=sql_hook_params, parameters=parameters, **kwargs ) self.slack_webhook_conn_id = slack_webhook_conn_id self.slack_channel = slack_channel self.slack_message = slack_message self.results_df_name = results_df_name self.kwargs = kwargs def _render_and_send_slack_message(self, context, df) -> None: # Put the dataframe into the context and render the JINJA template fields context[self.results_df_name] = df self.render_template_fields(context) slack_hook = self._get_slack_hook() self.log.info("Sending slack message: %s", self.slack_message) slack_hook.send(text=self.slack_message, channel=self.slack_channel) def _get_slack_hook(self) -> SlackWebhookHook: return SlackWebhookHook( slack_webhook_conn_id=self.slack_webhook_conn_id, proxy=self.slack_proxy, timeout=self.slack_timeout, retry_handlers=self.slack_retry_handlers, )
[docs] def render_template_fields(self, context, jinja_env=None) -> None: # If this is the first render of the template fields, exclude slack_message from rendering since # the SQL results haven't been retrieved yet. if self.times_rendered == 0: fields_to_render: Iterable[str] = (x for x in self.template_fields if x != "slack_message") else: fields_to_render = self.template_fields if not jinja_env: jinja_env = self.get_template_env() # Add the tabulate library into the JINJA environment jinja_env.filters["tabulate"] = tabulate self._do_render_template_fields(self, fields_to_render, context, jinja_env, set()) self.times_rendered += 1
[docs] def execute(self, context: Context) -> None: if not isinstance(self.sql, str): raise AirflowException("Expected 'sql' parameter should be a string.") if self.sql is None or self.sql.strip() == "": raise AirflowException("Expected 'sql' parameter is missing.") if self.slack_message is None or self.slack_message.strip() == "": raise AirflowException("Expected 'slack_message' parameter is missing.") df = self._get_query_results() self._render_and_send_slack_message(context, df) self.log.debug("Finished sending SQL data to Slack")

Was this entry helpful?