Source code for airflow.providers.celery.cli.celery_command

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
"""Celery command."""

from __future__ import annotations

import logging
import sys
from contextlib import contextmanager
from multiprocessing import Process

import psutil
import sqlalchemy.exc
from celery import maybe_patch_concurrency  # type: ignore[attr-defined]
from celery.app.defaults import DEFAULT_TASK_LOG_FMT
from celery.signals import after_setup_logger
from lockfile.pidlockfile import read_pid_from_pidfile, remove_existing_pidfile

from airflow import settings
from airflow.configuration import conf
from airflow.utils import cli as cli_utils
from airflow.utils.cli import setup_locations
from airflow.utils.serve_logs import serve_logs

[docs]WORKER_PROCESS_NAME = "worker"
def _run_command_with_daemon_option(*args, **kwargs): try: from airflow.cli.commands.local_commands.daemon_utils import run_command_with_daemon_option run_command_with_daemon_option(*args, **kwargs) except ImportError: from airflow.exceptions import AirflowOptionalProviderFeatureException raise AirflowOptionalProviderFeatureException( "Failed to import run_command_with_daemon_option. This feature is only available in Airflow versions >= 2.8.0" ) def _providers_configuration_loaded(func): def wrapper(*args, **kwargs): try: from airflow.utils.providers_configuration_loader import providers_configuration_loaded providers_configuration_loaded(func)(*args, **kwargs) except ImportError as e: from airflow.exceptions import AirflowOptionalProviderFeatureException raise AirflowOptionalProviderFeatureException( "Failed to import providers_configuration_loaded. This feature is only available in Airflow versions >= 2.8.0" ) from e return wrapper @cli_utils.action_cli @_providers_configuration_loaded
[docs]def flower(args): """Start Flower, Celery monitoring tool.""" # This needs to be imported locally to not trigger Providers Manager initialization from airflow.providers.celery.executors.celery_executor import app as celery_app options = [ "flower", conf.get("celery", "BROKER_URL"), f"--address={args.hostname}", f"--port={args.port}", ] if args.broker_api: options.append(f"--broker-api={args.broker_api}") if args.url_prefix: options.append(f"--url-prefix={args.url_prefix}") if args.basic_auth: options.append(f"--basic-auth={args.basic_auth}") if args.flower_conf: options.append(f"--conf={args.flower_conf}") _run_command_with_daemon_option( args=args, process_name="flower", callback=lambda: celery_app.start(options) )
@contextmanager def _serve_logs(skip_serve_logs: bool = False): """Start serve_logs sub-process.""" sub_proc = None if skip_serve_logs is False: sub_proc = Process(target=serve_logs) sub_proc.start() try: yield finally: if sub_proc: sub_proc.terminate() @after_setup_logger.connect() @_providers_configuration_loaded
[docs]def logger_setup_handler(logger, **kwargs): """ Reconfigure the logger. * remove any previously configured handlers * logs of severity error, and above goes to stderr, * logs of severity lower than error goes to stdout. """ if conf.getboolean("logging", "celery_stdout_stderr_separation", fallback=False): celery_formatter = logging.Formatter(DEFAULT_TASK_LOG_FMT) class NoErrorOrAboveFilter(logging.Filter): """Allow only logs with level *lower* than ERROR to be reported.""" def filter(self, record): return record.levelno < logging.ERROR below_error_handler = logging.StreamHandler(sys.stdout) below_error_handler.addFilter(NoErrorOrAboveFilter()) below_error_handler.setFormatter(celery_formatter) from_error_handler = logging.StreamHandler(sys.stderr) from_error_handler.setLevel(logging.ERROR) from_error_handler.setFormatter(celery_formatter) logger.handlers[:] = [below_error_handler, from_error_handler]
@cli_utils.action_cli @_providers_configuration_loaded
[docs]def worker(args): """Start Airflow Celery worker.""" # This needs to be imported locally to not trigger Providers Manager initialization from airflow.providers.celery.executors.celery_executor import app as celery_app # Disable connection pool so that celery worker does not hold an unnecessary db connection settings.reconfigure_orm(disable_connection_pool=True) if not settings.validate_session(): raise SystemExit("Worker exiting, database connection precheck failed.") autoscale = args.autoscale skip_serve_logs = args.skip_serve_logs if autoscale is None and conf.has_option("celery", "worker_autoscale"): autoscale = conf.get("celery", "worker_autoscale") if hasattr(celery_app.backend, "ResultSession"): # Pre-create the database tables now, otherwise SQLA via Celery has a # race condition where one of the subprocesses can die with "Table # already exists" error, because SQLA checks for which tables exist, # then issues a CREATE TABLE, rather than doing CREATE TABLE IF NOT # EXISTS try: session = celery_app.backend.ResultSession() session.close() except sqlalchemy.exc.IntegrityError: # At least on postgres, trying to create a table that already exist # gives a unique constraint violation or the # "pg_type_typname_nsp_index" table. If this happens we can ignore # it, we raced to create the tables and lost. pass # backwards-compatible: https://github.com/apache/airflow/pull/21506#pullrequestreview-879893763 celery_log_level = conf.get("logging", "CELERY_LOGGING_LEVEL") if not celery_log_level: celery_log_level = conf.get("logging", "LOGGING_LEVEL") # Setup Celery worker options = [ "worker", "-O", "fair", "--queues", args.queues, "--concurrency", args.concurrency, "--hostname", args.celery_hostname, "--loglevel", celery_log_level, ] if autoscale: options.extend(["--autoscale", autoscale]) if args.without_mingle: options.append("--without-mingle") if args.without_gossip: options.append("--without-gossip") if conf.has_option("celery", "pool"): pool = conf.get("celery", "pool") options.extend(["--pool", pool]) # Celery pools of type eventlet and gevent use greenlets, which # requires monkey patching the app: # https://eventlet.net/doc/patching.html#monkey-patch # Otherwise task instances hang on the workers and are never # executed. maybe_patch_concurrency(["-P", pool]) worker_pid_file_path, stdout, stderr, log_file = setup_locations( process=WORKER_PROCESS_NAME, stdout=args.stdout, stderr=args.stderr, log=args.log_file, pid=args.pid, ) def run_celery_worker(): with _serve_logs(skip_serve_logs): celery_app.worker_main(options) if args.umask: umask = args.umask else: umask = conf.get("celery", "worker_umask", fallback=settings.DAEMON_UMASK) _run_command_with_daemon_option( args=args, process_name=WORKER_PROCESS_NAME, callback=run_celery_worker, should_setup_logging=True, umask=umask, pid_file=worker_pid_file_path, )
@cli_utils.action_cli @_providers_configuration_loaded
[docs]def stop_worker(args): """Send SIGTERM to Celery worker.""" # Read PID from file if args.pid: pid_file_path = args.pid else: pid_file_path, _, _, _ = setup_locations(process=WORKER_PROCESS_NAME) pid = read_pid_from_pidfile(pid_file_path) # Send SIGTERM if pid: worker_process = psutil.Process(pid) worker_process.terminate() # Remove pid file remove_existing_pidfile(pid_file_path)

Was this entry helpful?