#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""This module contains Databricks operators."""
from __future__ import annotations
import csv
import json
from collections.abc import Sequence
from typing import TYPE_CHECKING, Any, ClassVar
from databricks.sql.utils import ParamEscaper
from airflow.exceptions import AirflowException
from airflow.models import BaseOperator
from airflow.providers.common.sql.operators.sql import SQLExecuteQueryOperator
from airflow.providers.databricks.hooks.databricks_sql import DatabricksSqlHook
if TYPE_CHECKING:
from airflow.utils.context import Context
[docs]class DatabricksSqlOperator(SQLExecuteQueryOperator):
"""
Executes SQL code in a Databricks SQL endpoint or a Databricks cluster.
.. seealso::
For more information on how to use this operator, take a look at the guide:
:ref:`howto/operator:DatabricksSqlOperator`
:param databricks_conn_id: Reference to
:ref:`Databricks connection id<howto/connection:databricks>` (templated)
:param http_path: Optional string specifying HTTP path of Databricks SQL Endpoint or cluster.
If not specified, it should be either specified in the Databricks connection's extra parameters,
or ``sql_endpoint_name`` must be specified.
:param sql_endpoint_name: Optional name of Databricks SQL Endpoint. If not specified, ``http_path`` must
be provided as described above.
:param sql: the SQL code to be executed as a single string, or
a list of str (sql statements), or a reference to a template file. (templated)
Template references are recognized by str ending in '.sql'
:param parameters: (optional) the parameters to render the SQL query with.
:param session_configuration: An optional dictionary of Spark session parameters. Defaults to None.
If not specified, it could be specified in the Databricks connection's extra parameters.
:param client_parameters: Additional parameters internal to Databricks SQL Connector parameters
:param http_headers: An optional list of (k, v) pairs that will be set as HTTP headers on every request.
(templated)
:param catalog: An optional initial catalog to use. Requires DBR version 9.0+ (templated)
:param schema: An optional initial schema to use. Requires DBR version 9.0+ (templated)
:param output_path: optional string specifying the file to which write selected data. (templated)
:param output_format: format of output data if ``output_path` is specified.
Possible values are ``csv``, ``json``, ``jsonl``. Default is ``csv``.
:param csv_params: parameters that will be passed to the ``csv.DictWriter`` class used to write CSV data.
"""
[docs] template_fields: Sequence[str] = tuple(
{"_output_path", "schema", "catalog", "http_headers", "databricks_conn_id"}
| set(SQLExecuteQueryOperator.template_fields)
)
[docs] template_ext: Sequence[str] = (".sql",)
[docs] template_fields_renderers: ClassVar[dict] = {"sql": "sql"}
[docs] conn_id_field = "databricks_conn_id"
def __init__(
self,
*,
databricks_conn_id: str = DatabricksSqlHook.default_conn_name,
http_path: str | None = None,
sql_endpoint_name: str | None = None,
session_configuration=None,
http_headers: list[tuple[str, str]] | None = None,
catalog: str | None = None,
schema: str | None = None,
output_path: str | None = None,
output_format: str = "csv",
csv_params: dict[str, Any] | None = None,
client_parameters: dict[str, Any] | None = None,
**kwargs,
) -> None:
super().__init__(conn_id=databricks_conn_id, **kwargs)
self.databricks_conn_id = databricks_conn_id
self._output_path = output_path
self._output_format = output_format
self._csv_params = csv_params
self.http_path = http_path
self.sql_endpoint_name = sql_endpoint_name
self.session_configuration = session_configuration
self.client_parameters = {} if client_parameters is None else client_parameters
self.hook_params = kwargs.pop("hook_params", {})
self.http_headers = http_headers
self.catalog = catalog
self.schema = schema
[docs] def get_db_hook(self) -> DatabricksSqlHook:
hook_params = {
"http_path": self.http_path,
"session_configuration": self.session_configuration,
"sql_endpoint_name": self.sql_endpoint_name,
"http_headers": self.http_headers,
"catalog": self.catalog,
"schema": self.schema,
"caller": "DatabricksSqlOperator",
**self.client_parameters,
**self.hook_params,
}
return DatabricksSqlHook(self.databricks_conn_id, **hook_params)
def _should_run_output_processing(self) -> bool:
return self.do_xcom_push or bool(self._output_path)
def _process_output(self, results: list[Any], descriptions: list[Sequence[Sequence] | None]) -> list[Any]:
if not self._output_path:
return list(zip(descriptions, results))
if not self._output_format:
raise AirflowException("Output format should be specified!")
# Output to a file only the result of last query
last_description = descriptions[-1]
last_results = results[-1]
if last_description is None:
raise AirflowException("There is missing description present for the output file. .")
field_names = [field[0] for field in last_description]
if self._output_format.lower() == "csv":
with open(self._output_path, "w", newline="") as file:
if self._csv_params:
csv_params = self._csv_params
else:
csv_params = {}
write_header = csv_params.get("header", True)
if "header" in csv_params:
del csv_params["header"]
writer = csv.DictWriter(file, fieldnames=field_names, **csv_params)
if write_header:
writer.writeheader()
for row in last_results:
writer.writerow(row._asdict())
elif self._output_format.lower() == "json":
with open(self._output_path, "w") as file:
file.write(json.dumps([row._asdict() for row in last_results]))
elif self._output_format.lower() == "jsonl":
with open(self._output_path, "w") as file:
for row in last_results:
file.write(json.dumps(row._asdict()))
file.write("\n")
else:
raise AirflowException(f"Unsupported output format: '{self._output_format}'")
return list(zip(descriptions, results))
[docs]class DatabricksCopyIntoOperator(BaseOperator):
"""
Executes COPY INTO command in a Databricks SQL endpoint or a Databricks cluster.
COPY INTO command is constructed from individual pieces, that are described in
`documentation <https://docs.databricks.com/sql/language-manual/delta-copy-into.html>`_.
.. seealso::
For more information on how to use this operator, take a look at the guide:
:ref:`howto/operator:DatabricksSqlCopyIntoOperator`
:param table_name: Required name of the table. (templated)
:param file_location: Required location of files to import. (templated)
:param file_format: Required file format. Supported formats are
``CSV``, ``JSON``, ``AVRO``, ``ORC``, ``PARQUET``, ``TEXT``, ``BINARYFILE``.
:param databricks_conn_id: Reference to
:ref:`Databricks connection id<howto/connection:databricks>` (templated)
:param http_path: Optional string specifying HTTP path of Databricks SQL Endpoint or cluster.
If not specified, it should be either specified in the Databricks connection's extra parameters,
or ``sql_endpoint_name`` must be specified.
:param sql_endpoint_name: Optional name of Databricks SQL Endpoint.
If not specified, ``http_path`` must be provided as described above.
:param session_configuration: An optional dictionary of Spark session parameters. Defaults to None.
If not specified, it could be specified in the Databricks connection's extra parameters.
:param http_headers: An optional list of (k, v) pairs that will be set as HTTP headers on every request
:param catalog: An optional initial catalog to use. Requires DBR version 9.0+
:param schema: An optional initial schema to use. Requires DBR version 9.0+
:param client_parameters: Additional parameters internal to Databricks SQL Connector parameters
:param files: optional list of files to import. Can't be specified together with ``pattern``. (templated)
:param pattern: optional regex string to match file names to import.
Can't be specified together with ``files``.
:param expression_list: optional string that will be used in the ``SELECT`` expression.
:param credential: optional credential configuration for authentication against a source location.
:param storage_credential: optional Unity Catalog storage credential for destination.
:param encryption: optional encryption configuration for a specified location.
:param format_options: optional dictionary with options specific for a given file format.
:param force_copy: optional bool to control forcing of data import
(could be also specified in ``copy_options``).
:param validate: optional configuration for schema & data validation. ``True`` forces validation
of all rows, integer number - validate only N first rows
:param copy_options: optional dictionary of copy options. Right now only ``force`` option is supported.
"""
[docs] template_fields: Sequence[str] = (
"file_location",
"files",
"table_name",
"databricks_conn_id",
)
def __init__(
self,
*,
table_name: str,
file_location: str,
file_format: str,
databricks_conn_id: str = DatabricksSqlHook.default_conn_name,
http_path: str | None = None,
sql_endpoint_name: str | None = None,
session_configuration=None,
http_headers: list[tuple[str, str]] | None = None,
client_parameters: dict[str, Any] | None = None,
catalog: str | None = None,
schema: str | None = None,
files: list[str] | None = None,
pattern: str | None = None,
expression_list: str | None = None,
credential: dict[str, str] | None = None,
storage_credential: str | None = None,
encryption: dict[str, str] | None = None,
format_options: dict[str, str] | None = None,
force_copy: bool | None = None,
copy_options: dict[str, str] | None = None,
validate: bool | int | None = None,
**kwargs,
) -> None:
"""Create a new ``DatabricksSqlOperator``."""
super().__init__(**kwargs)
if files is not None and pattern is not None:
raise AirflowException("Only one of 'pattern' or 'files' should be specified")
if table_name == "":
raise AirflowException("table_name shouldn't be empty")
if file_location == "":
raise AirflowException("file_location shouldn't be empty")
if file_format not in COPY_INTO_APPROVED_FORMATS:
raise AirflowException(f"file_format '{file_format}' isn't supported")
self.files = files
self._pattern = pattern
self._file_format = file_format
self.databricks_conn_id = databricks_conn_id
self._http_path = http_path
self._sql_endpoint_name = sql_endpoint_name
self.session_config = session_configuration
self.table_name = table_name
self._catalog = catalog
self._schema = schema
self.file_location = file_location
self._expression_list = expression_list
self._credential = credential
self._storage_credential = storage_credential
self._encryption = encryption
self._format_options = format_options
self._copy_options = copy_options or {}
self._validate = validate
self._http_headers = http_headers
self._client_parameters = client_parameters or {}
if force_copy is not None:
self._copy_options["force"] = "true" if force_copy else "false"
def _get_hook(self) -> DatabricksSqlHook:
return DatabricksSqlHook(
self.databricks_conn_id,
http_path=self._http_path,
session_configuration=self.session_config,
sql_endpoint_name=self._sql_endpoint_name,
http_headers=self._http_headers,
catalog=self._catalog,
schema=self._schema,
caller="DatabricksCopyIntoOperator",
**self._client_parameters,
)
@staticmethod
def _generate_options(
name: str,
escaper: ParamEscaper,
opts: dict[str, str] | None = None,
escape_key: bool = True,
) -> str:
formatted_opts = ""
if opts:
pairs = [
f"{escaper.escape_item(k) if escape_key else k} = {escaper.escape_item(v)}"
for k, v in opts.items()
]
formatted_opts = f"{name} ({', '.join(pairs)})"
return formatted_opts
def _create_sql_query(self) -> str:
escaper = ParamEscaper()
maybe_with = ""
if self._encryption is not None or self._credential is not None:
maybe_encryption = ""
if self._encryption is not None:
maybe_encryption = self._generate_options("ENCRYPTION", escaper, self._encryption, False)
maybe_credential = ""
if self._credential is not None:
maybe_credential = self._generate_options("CREDENTIAL", escaper, self._credential, False)
maybe_with = f" WITH ({maybe_credential} {maybe_encryption})"
location = escaper.escape_item(self.file_location) + maybe_with
if self._expression_list is not None:
location = f"(SELECT {self._expression_list} FROM {location})"
files_or_pattern = ""
if self._pattern is not None:
files_or_pattern = f"PATTERN = {escaper.escape_item(self._pattern)}\n"
elif self.files is not None:
files_or_pattern = f"FILES = {escaper.escape_item(self.files)}\n"
format_options = self._generate_options("FORMAT_OPTIONS", escaper, self._format_options) + "\n"
copy_options = self._generate_options("COPY_OPTIONS", escaper, self._copy_options) + "\n"
storage_cred = ""
if self._storage_credential:
storage_cred = f" WITH (CREDENTIAL {self._storage_credential})"
validation = ""
if self._validate is not None:
if isinstance(self._validate, bool):
if self._validate:
validation = "VALIDATE ALL\n"
elif isinstance(self._validate, int):
if self._validate < 0:
raise AirflowException(
f"Number of rows for validation should be positive, got: {self._validate}"
)
validation = f"VALIDATE {self._validate} ROWS\n"
else:
raise AirflowException(f"Incorrect data type for validate parameter: {type(self._validate)}")
# TODO: think on how to make sure that table_name and expression_list aren't used for SQL injection
sql = f"""COPY INTO {self.table_name}{storage_cred}
FROM {location}
FILEFORMAT = {self._file_format}
{validation}{files_or_pattern}{format_options}{copy_options}
"""
return sql.strip()
[docs] def execute(self, context: Context) -> Any:
sql = self._create_sql_query()
self.log.info("Executing: %s", sql)
hook = self._get_hook()
hook.run(sql)
[docs] def on_kill(self) -> None:
# NB: on_kill isn't required for this operator since query cancelling gets
# handled in `DatabricksSqlHook.run()` method which is called in `execute()`
...