# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations
import contextlib
import json
from collections.abc import Mapping, Sequence
from functools import cached_property
from typing import TYPE_CHECKING, Any, cast
import requests
import weaviate
import weaviate.exceptions
from tenacity import Retrying, retry, retry_if_exception, retry_if_exception_type, stop_after_attempt
from weaviate import WeaviateClient
from weaviate.auth import Auth
from weaviate.classes.query import Filter
from weaviate.exceptions import ObjectAlreadyExistsException
from weaviate.util import generate_uuid5
from airflow.hooks.base import BaseHook
if TYPE_CHECKING:
from typing import Callable, Literal
import pandas as pd
from weaviate.auth import AuthCredentials
from weaviate.collections import Collection
from weaviate.collections.classes.config import CollectionConfig, CollectionConfigSimple
from weaviate.collections.classes.internal import (
Object,
QueryReturnType,
QuerySearchReturnType,
ReferenceInputs,
)
from weaviate.collections.classes.types import Properties
from weaviate.types import UUID
from airflow.models.connection import Connection
[docs] ExitingSchemaOptions = Literal["replace", "fail", "ignore"]
[docs]HTTP_RETRY_STATUS_CODE = [429, 500, 503, 504]
[docs]REQUESTS_EXCEPTIONS_TYPES = (
requests.RequestException,
requests.exceptions.ConnectionError,
requests.exceptions.HTTPError,
requests.exceptions.ConnectTimeout,
)
[docs]def check_http_error_is_retryable(exc: BaseException):
return (
isinstance(exc, requests.exceptions.RequestException)
and exc.response
and exc.response.status_code
and exc.response.status_code in HTTP_RETRY_STATUS_CODE
)
[docs]class WeaviateHook(BaseHook):
"""
Interact with Weaviate database to store vectors. This hook uses the 'conn_id'.
:param conn_id: The connection id to use when connecting to Weaviate. <howto/connection:weaviate>
"""
[docs] conn_name_attr = "conn_id"
[docs] default_conn_name = "weaviate_default"
def __init__(
self,
conn_id: str = default_conn_name,
*args: Any,
**kwargs: Any,
) -> None:
super().__init__(*args, **kwargs)
self.conn_id = conn_id
@classmethod
@classmethod
[docs] def get_ui_field_behaviour(cls) -> dict[str, Any]:
"""Return custom field behaviour."""
return {
"hidden_fields": ["schema"],
"relabeling": {
"login": "OIDC Username",
"password": "OIDC Password",
},
}
[docs] def get_conn(self) -> WeaviateClient:
conn = self.get_connection(self.conn_id)
extras = conn.extra_dejson
http_secure = extras.pop("http_secure", False)
grpc_secure = extras.pop("grpc_secure", False)
return weaviate.connect_to_custom(
http_host=conn.host,
http_port=conn.port or 443 if http_secure else 80,
http_secure=http_secure,
grpc_host=extras.pop("grpc_host", conn.host),
grpc_port=extras.pop("grpc_port", 443 if grpc_secure else 80),
grpc_secure=grpc_secure,
headers=extras.pop("additional_headers", {}),
auth_credentials=self._extract_auth_credentials(conn),
)
def _extract_auth_credentials(self, conn: Connection) -> AuthCredentials:
extras = conn.extra_dejson
# previously token was used as api_key(backwards compatibility)
api_key = extras.get("api_key", None) or extras.get("token", None)
if api_key:
return Auth.api_key(api_key=api_key)
access_token = extras.get("access_token", None)
if access_token:
refresh_token = extras.get("refresh_token", None)
expires_in = extras.get("expires_in", 60)
return Auth.bearer_token(
access_token=access_token, expires_in=expires_in, refresh_token=refresh_token
)
scope = extras.get("scope", None) or extras.get("oidc_scope", None)
client_secret = extras.get("client_secret", None)
if client_secret:
return Auth.client_credentials(client_secret=client_secret, scope=scope)
username = conn.login or ""
password = conn.password or ""
return Auth.client_password(username=username, password=password, scope=scope)
@cached_property
[docs] def conn(self) -> WeaviateClient:
"""Returns a Weaviate client."""
return self.get_conn()
[docs] def test_connection(self) -> tuple[bool, str]:
try:
client = self.conn
client.collections.list_all()
return True, "Connection established!"
except Exception as e:
self.log.error("Error testing Weaviate connection: %s", e)
return False, str(e)
[docs] def create_collection(self, name: str, **kwargs) -> Collection:
"""Create a new collection."""
client = self.conn
return client.collections.create(name=name, **kwargs)
[docs] def get_collection(self, name: str) -> Collection:
"""
Get a collection by name.
:param name: The name of the collection to get.
"""
client = self.conn
return client.collections.get(name)
[docs] def delete_collections(
self, collection_names: list[str] | str, if_error: str = "stop"
) -> list[str] | None:
"""
Delete all or specific collections if collection_names are provided.
:param collection_names: list of collection names to be deleted.
:param if_error: define the actions to be taken if there is an error while deleting a collection, possible
options are `stop` and `continue`
:return: if `if_error=continue` return list of collections which we failed to delete.
if `if_error=stop` returns None.
"""
client = self.get_conn()
collection_names = (
[collection_names] if collection_names and isinstance(collection_names, str) else collection_names
)
failed_collection_list = []
for collection_name in collection_names:
try:
for attempt in Retrying(
stop=stop_after_attempt(3),
retry=(
retry_if_exception(lambda exc: check_http_error_is_retryable(exc))
| retry_if_exception_type(REQUESTS_EXCEPTIONS_TYPES)
),
):
with attempt:
self.log.info(attempt)
client.collections.delete(collection_name)
except Exception as e:
if if_error == "continue":
self.log.error(e)
failed_collection_list.append(collection_name)
elif if_error == "stop":
raise e
if if_error == "continue":
return failed_collection_list
return None
@retry(
reraise=True,
stop=stop_after_attempt(3),
retry=(
retry_if_exception(lambda exc: check_http_error_is_retryable(exc))
| retry_if_exception_type(REQUESTS_EXCEPTIONS_TYPES)
),
)
[docs] def get_collection_configuration(self, collection_name: str) -> CollectionConfig | CollectionConfigSimple:
"""
Get the collection configuration from Weaviate.
:param collection_name: The collection for which to return the collection configuration.
"""
client = self.get_conn()
return client.collections.get(collection_name).config.get()
[docs] def update_collection_configuration(self, collection_name: str, **kwargs) -> None:
"""Update the collection configuration."""
collection = self.get_collection(collection_name)
collection.config.update(**kwargs)
@staticmethod
def _convert_dataframe_to_list(data: list[dict[str, Any]] | pd.DataFrame | None) -> list[dict[str, Any]]:
"""
Convert dataframe to list of dicts.
In scenario where Pandas isn't installed and we pass data as a list of dictionaries, importing
Pandas will fail, which is invalid. This function handles this scenario.
"""
with contextlib.suppress(ImportError):
import pandas
if isinstance(data, pandas.DataFrame):
data = json.loads(data.to_json(orient="records"))
return cast(list[dict[str, Any]], data)
[docs] def batch_data(
self,
collection_name: str,
data: list[dict[str, Any]] | pd.DataFrame | None,
vector_col: str = "Vector",
uuid_col: str = "id",
retry_attempts_per_object: int = 5,
references: ReferenceInputs | None = None,
) -> None:
"""
Add multiple objects or object references at once into weaviate.
:param collection_name: The name of the collection that objects belongs to.
:param data: list or dataframe of objects we want to add.
:param vector_col: name of the column containing the vector.
:param uuid_col: Name of the column containing the UUID.
:param retry_attempts_per_object: number of time to try in case of failure before giving up.
:param references: The references of the object to be added as a dictionary. Use `wvc.Reference.to` to create the correct values in the dict.
"""
converted_data = self._convert_dataframe_to_list(data)
collection = self.get_collection(collection_name)
with collection.batch.dynamic() as batch:
# Batch import all data
for data_obj in converted_data:
for attempt in Retrying(
stop=stop_after_attempt(retry_attempts_per_object),
retry=(
retry_if_exception(lambda exc: check_http_error_is_retryable(exc))
| retry_if_exception_type(REQUESTS_EXCEPTIONS_TYPES)
),
):
with attempt:
vector = data_obj.pop(vector_col, None)
uuid = data_obj.pop(uuid_col, None)
self.log.debug(
"Attempt %s of inserting object with uuid: %s",
attempt.retry_state.attempt_number,
uuid,
)
batch.add_object(
properties=data_obj,
references=references,
uuid=uuid,
vector=vector,
)
self.log.debug("Inserted object with uuid: %s into batch", uuid)
[docs] def query_with_vector(
self,
embeddings: list[float],
collection_name: str,
properties: list[str],
certainty: float = 0.7,
limit: int = 1,
**kwargs,
) -> QuerySearchReturnType:
"""
Query weaviate database with near vectors.
This method uses a vector search using a Get query. we are using a with_near_vector to provide
weaviate with a query with vector itself. This is needed for query a Weaviate class with a custom,
external vectorizer. Weaviate then converts this into a vector through the inference API
(OpenAI in this particular example) and uses that vector as the basis for a vector search.
"""
client = self.conn
collection = client.collections.get(collection_name)
response = collection.query.near_vector(
near_vector=embeddings, certainty=certainty, limit=limit, return_properties=properties, **kwargs
)
return response
[docs] def query_with_text(
self, search_text: str, collection_name: str, properties: list[str], limit: int = 1, **kwargs
) -> QuerySearchReturnType:
"""
Query using near text.
This method uses a vector search using a Get query. we are using a nearText operator to provide
weaviate with a query search_text. Weaviate then converts this into a vector through the inference
API (OpenAI in this particular example) and uses that vector as the basis for a vector search.
"""
client = self.conn
collection = client.collections.get(collection_name)
response = collection.query.near_text(
query=search_text, limit=limit, return_properties=properties, **kwargs
)
return response
[docs] def create_object(self, data_object: dict, collection_name: str, **kwargs) -> UUID | None:
"""
Create a new object.
:param data_object: Object to be added. If type is str it should be either a URL or a file.
:param collection_name: Collection name associated with the object given.
:param kwargs: Additional parameters to be passed to weaviate_client.data_object.create()
"""
collection = self.get_collection(collection_name)
# generate deterministic uuid if not provided
uuid = kwargs.pop("uuid", generate_uuid5(data_object))
try:
return collection.data.insert(properties=data_object, uuid=uuid, **kwargs)
except ObjectAlreadyExistsException:
self.log.warning("Object with the UUID %s already exists", uuid)
return None
[docs] def get_or_create_object(
self,
collection_name,
data_object: dict,
vector: Sequence | None = None,
**kwargs,
) -> QueryReturnType | UUID | None:
"""
Get or Create a new object.
Returns the object if already exists, return UUID if not
:param collection_name: Collection name associated with the object given..
:param data_object: Object to be added.
:param vector: Vector associated with the object given. This argument is only used when creating object.
:param kwargs: parameters to be passed to collection.data.fetch_object_by_id() or
collection.data.fetch_objects()
"""
obj = self.get_object(collection_name=collection_name, **kwargs)
if not obj:
if not (data_object and collection_name):
raise ValueError("data_object and collection are required to create a new object")
uuid = kwargs.pop("uuid", generate_uuid5(data_object))
return self.create_object(
data_object=data_object, collection_name=collection_name, uuid=uuid, vector=vector, **kwargs
)
return obj
[docs] def get_object(self, collection_name: str, **kwargs) -> QueryReturnType:
"""
Get objects or an object from weaviate.
:param kwargs: parameters to be passed to collection.query.fetch_objects()
"""
collection = self.get_collection(collection_name)
return collection.query.fetch_objects(**kwargs)
[docs] def get_all_objects(
self, collection_name: str, after: str | UUID | None = None, as_dataframe: bool = False, **kwargs
) -> list[Object] | pd.DataFrame:
"""
Get all objects from weaviate.
if after is provided, it will be used as the starting point for the listing.
:param after: uuid of the object to start listing from
:param as_dataframe: if True, returns a pandas dataframe
:param kwargs: parameters to be passed to weaviate_client.data_object.get()
"""
all_objects: list[Object] = []
after = kwargs.pop("after", after)
while True:
results = self.get_object(collection_name=collection_name, after=after, **kwargs)
if not results or not results.objects:
break
all_objects.extend(results.objects)
after = results.objects[-1].uuid
if as_dataframe:
import pandas
# '_WeaviateUUIDInt' object has no attribute 'is_safe' which causes error
return pandas.DataFrame(
[
{
"collection": obj.collection,
"metadata": obj.metadata,
"properties": obj.properties,
"references": obj.references,
"uuid": str(obj.uuid),
"vector": obj.vector,
}
for obj in all_objects
]
)
return all_objects
[docs] def delete_object(self, collection_name: str, uuid: UUID | str) -> bool:
"""
Delete an object from weaviate.
:param collection_name: Collection name associated with the object given.
:param uuid: uuid of the object to be deleted
"""
collection = self.get_collection(collection_name)
return collection.data.delete_by_id(uuid=uuid)
[docs] def update_object(
self, collection_name: str, uuid: UUID | str, properties: Properties | None = None, **kwargs
) -> None:
"""
Update an object in weaviate.
:param collection_name: Collection name associated with the object given.
:param uuid: uuid of the object to be updated
:param properties: The properties of the object.
:param kwargs: Optional parameters to be passed to collection.data.update()
"""
collection = self.get_collection(collection_name)
collection.data.update(uuid=uuid, properties=properties, **kwargs)
[docs] def replace_object(
self,
collection_name: str,
uuid: UUID | str,
properties: Properties,
references: ReferenceInputs | None = None,
**kwargs,
) -> None:
"""
Replace an object in weaviate.
:param collection_name: Collection name associated with the object given.
:param uuid: uuid of the object to be updated
:param properties: The properties of the object.
:param references: Any references to other objects in Weaviate.
:param kwargs: Optional parameters to be passed to collection.data.replace()
"""
collection = self.get_collection(collection_name)
collection.data.replace(uuid=uuid, properties=properties, references=references, **kwargs)
[docs] def object_exists(self, collection_name: str, uuid: str | UUID) -> bool:
"""
Check if an object exists in weaviate.
:param collection_name: Collection name associated with the object given.
:param uuid: The UUID of the object that may or may not exist within Weaviate.
"""
collection = self.get_collection(collection_name)
return collection.data.exists(uuid=uuid)
def _delete_objects(
self, uuids: list[UUID], collection_name: str, retry_attempts_per_object: int = 5
) -> None:
"""
Delete multiple objects.
Helper function for `create_or_replace_objects()` to delete multiple objects.
:param uuids: Collection of uuids.
:param collection_name: Name of the collection in Weaviate schema where data is to be ingested.
:param retry_attempts_per_object: number of times to try in case of failure before giving up.
"""
for uuid in uuids:
for attempt in Retrying(
stop=stop_after_attempt(retry_attempts_per_object),
retry=(
retry_if_exception(lambda exc: check_http_error_is_retryable(exc))
| retry_if_exception_type(REQUESTS_EXCEPTIONS_TYPES)
),
):
with attempt:
try:
self.delete_object(uuid=uuid, collection_name=collection_name)
self.log.debug("Deleted object with uuid %s", uuid)
except weaviate.exceptions.UnexpectedStatusCodeException as e:
if e.status_code == 404:
self.log.debug("Tried to delete a non existent object with uuid %s", uuid)
else:
self.log.debug("Error occurred while trying to delete object with uuid %s", uuid)
raise e
self.log.info("Deleted %s objects.", len(uuids))
def _generate_uuids(
self,
df: pd.DataFrame,
collection_name: str,
unique_columns: list[str],
vector_column: str | None = None,
uuid_column: str | None = None,
) -> tuple[pd.DataFrame, str]:
"""
Add UUIDs to a DataFrame, useful for replace operations where UUIDs must be known before ingestion.
By default, UUIDs are generated using a custom function if 'uuid_column' is not specified.
The function can potentially ingest the same data multiple times with different UUIDs.
:param df: A dataframe with data to generate a UUID from.
:param collection_name: The name of the collection use as part of the uuid namespace.
:param uuid_column: Name of the column to create. Default is 'id'.
:param unique_columns: A list of columns to use for UUID generation. By default, all columns except
vector_column will be used.
:param vector_column: Name of the column containing the vector data. If specified the vector will be
removed prior to generating the uuid.
"""
column_names = df.columns.to_list()
difference_columns = set(unique_columns).difference(set(df.columns.to_list()))
if difference_columns:
raise ValueError(f"Columns {', '.join(difference_columns)} don't exist in dataframe")
if uuid_column is None:
self.log.info("No uuid_column provided. Generating UUIDs as column name `id`.")
if "id" in column_names:
raise ValueError(
"Property 'id' already in dataset. Consider renaming or specify 'uuid_column'."
)
else:
uuid_column = "id"
if uuid_column in column_names:
raise ValueError(
f"Property {uuid_column} already in dataset. Consider renaming or specify a different"
f" 'uuid_column'."
)
df[uuid_column] = (
df[unique_columns]
.drop(columns=[vector_column], inplace=False, errors="ignore")
.apply(lambda row: generate_uuid5(identifier=row.to_dict(), namespace=collection_name), axis=1)
)
return df, uuid_column
def _get_documents_to_uuid_map(
self,
data: pd.DataFrame,
document_column: str,
uuid_column: str,
collection_name: str,
offset: int = 0,
limit: int = 2000,
) -> dict[str, set]:
"""
Get the document to uuid map of existing objects in db.
:param data: A single pandas DataFrame.
:param document_column: The name of the property to query.
:param collection_name: The name of the collection to query.
:param uuid_column: The name of the column containing the UUID.
:param offset: pagination parameter to indicate the which object to start fetching data.
:param limit: pagination param to indicate the number of records to fetch from start object.
"""
documents_to_uuid: dict = {}
document_keys = set(data[document_column])
while True:
collection = self.get_collection(collection_name)
data_objects = collection.query.fetch_objects(
filters=Filter.any_of(
[Filter.by_property(document_column).equal(key) for key in document_keys]
),
return_properties=[document_column],
limit=limit,
offset=offset,
)
if len(data_objects.objects) == 0:
break
offset = offset + limit
if uuid_column in data_objects.objects[0].properties:
data_object_properties = [obj.properties for obj in data_objects.objects]
else:
data_object_properties = []
for obj in data_objects.objects:
row = dict(obj.properties)
row[uuid_column] = str(obj.uuid)
data_object_properties.append(row)
documents_to_uuid.update(
self._prepare_document_to_uuid_map(
data=data_object_properties,
group_key=document_column,
get_value=lambda x: x[uuid_column],
)
)
return documents_to_uuid
@staticmethod
def _prepare_document_to_uuid_map(
data: Sequence[Mapping], group_key: str, get_value: Callable[[Mapping], str]
) -> dict[str, set]:
"""Prepare the map of grouped_key to set."""
grouped_key_to_set: dict = {}
for item in data:
document_url = item[group_key]
if document_url not in grouped_key_to_set:
grouped_key_to_set[document_url] = set()
grouped_key_to_set[document_url].add(get_value(item))
return grouped_key_to_set
def _get_segregated_documents(
self, data: pd.DataFrame, document_column: str, collection_name: str, uuid_column: str
) -> tuple[dict[str, set], set, set, set]:
"""
Segregate documents into changed, unchanged and new document, when compared to Weaviate db.
:param data: A single pandas DataFrame.
:param document_column: The name of the property to query.
:param collection_name: The name of the collection to query.
:param uuid_column: The name of the column containing the UUID.
"""
changed_documents = set()
unchanged_docs = set()
new_documents = set()
existing_documents_to_uuid = self._get_documents_to_uuid_map(
data=data,
uuid_column=uuid_column,
document_column=document_column,
collection_name=collection_name,
)
input_documents_to_uuid = self._prepare_document_to_uuid_map(
data=data.to_dict("records"),
group_key=document_column,
get_value=lambda x: x[uuid_column],
)
# segregate documents into changed, unchanged and non-existing documents.
for doc_url, doc_set in input_documents_to_uuid.items():
if doc_url in existing_documents_to_uuid:
if existing_documents_to_uuid[doc_url] != doc_set:
changed_documents.add(str(doc_url))
else:
unchanged_docs.add(str(doc_url))
else:
new_documents.add(str(doc_url))
return existing_documents_to_uuid, changed_documents, unchanged_docs, new_documents
def _delete_all_documents_objects(
self,
document_keys: list[str],
document_column: str,
collection_name: str,
total_objects_count: int = 1,
batch_delete_error: Sequence | None = None,
verbose: bool = False,
) -> Sequence[dict[str, UUID | str]]:
"""
Delete all object that belong to list of documents.
:param document_keys: list of unique documents identifiers.
:param document_column: Column in DataFrame that identifying source document.
:param collection_name: Name of the collection in Weaviate schema where data is to be ingested.
:param total_objects_count: total number of objects to delete, needed as max limit on one delete
query is 10,000, if we have more objects to delete we need to run query multiple times.
:param batch_delete_error: list to hold errors while inserting.
:param verbose: Flag to enable verbose output during the ingestion process.
"""
batch_delete_error = batch_delete_error or []
# This limit is imposed by Weavaite database
MAX_LIMIT_ON_TOTAL_DELETABLE_OBJECTS = 10000
collection = self.get_collection(collection_name)
delete_many_return = collection.data.delete_many(
where=Filter.any_of([Filter.by_property(document_column).equal(key) for key in document_keys]),
verbose=verbose,
dry_run=False,
)
total_objects_count = total_objects_count - MAX_LIMIT_ON_TOTAL_DELETABLE_OBJECTS
matched_objects = delete_many_return.matches
if delete_many_return.failed > 0 and delete_many_return.objects:
batch_delete_error = [
{"uuid": obj.uuid, "error": obj.error}
for obj in delete_many_return.objects
if obj.error is not None
]
if verbose:
self.log.info("Deleted %s Objects", matched_objects)
return batch_delete_error
[docs] def create_or_replace_document_objects(
self,
data: pd.DataFrame | list[dict[str, Any]] | list[pd.DataFrame],
collection_name: str,
document_column: str,
existing: str = "skip",
uuid_column: str | None = None,
vector_column: str = "Vector",
verbose: bool = False,
) -> Sequence[dict[str, UUID | str] | None]:
"""
create or replace objects belonging to documents.
In real-world scenarios, information sources like Airflow docs, Stack Overflow, or other issues
are considered 'documents' here. It's crucial to keep the database objects in sync with these sources.
If any changes occur in these documents, this function aims to reflect those changes in the database.
.. note::
This function assumes responsibility for identifying changes in documents, dropping relevant
database objects, and recreating them based on updated information. It's crucial to handle this
process with care, ensuring backups and validation are in place to prevent data loss or
inconsistencies.
Provides users with multiple ways of dealing with existing values.
replace: replace the existing objects with new objects. This option requires to identify the
objects belonging to a document. which by default is done by using document_column field.
skip: skip the existing objects and only add the missing objects of a document.
error: raise an error if an object belonging to a existing document is tried to be created.
:param data: A single pandas DataFrame or a list of dicts to be ingested.
:param colleciton_name: Name of the collection in Weaviate schema where data is to be ingested.
:param existing: Strategy for handling existing data: 'skip', or 'replace'. Default is 'skip'.
:param document_column: Column in DataFrame that identifying source document.
:param uuid_column: Column with pre-generated UUIDs. If not provided, UUIDs will be generated.
:param vector_column: Column with embedding vectors for pre-embedded data.
:param verbose: Flag to enable verbose output during the ingestion process.
:return: list of UUID which failed to create
"""
if existing not in ["skip", "replace", "error"]:
raise ValueError("Invalid parameter for 'existing'. Choices are 'skip', 'replace', 'error'.")
import pandas as pd
if len(data) == 0:
return []
if isinstance(data, Sequence) and isinstance(data[0], dict):
# This is done to narrow the type to list[dict[str, Any].
data = pd.json_normalize(cast(list[dict[str, Any]], data))
elif isinstance(data, Sequence) and isinstance(data[0], pd.DataFrame):
# This is done to narrow the type to list[pd.DataFrame].
data = pd.concat(cast(list[pd.DataFrame], data), ignore_index=True)
else:
data = cast(pd.DataFrame, data)
unique_columns = sorted(data.columns.to_list())
if verbose:
self.log.info("%s objects came in for insertion.", data.shape[0])
if uuid_column is None or uuid_column not in data.columns:
(
data,
uuid_column,
) = self._generate_uuids(
df=data,
collection_name=collection_name,
unique_columns=unique_columns,
vector_column=vector_column,
uuid_column=uuid_column,
)
# drop duplicate rows, using uuid_column and unique_columns. Removed `None` as it can be added to
# set when `uuid_column` is None.
data = data.drop_duplicates(subset=[document_column, uuid_column], keep="first")
if verbose:
self.log.info("%s objects remain after deduplication.", data.shape[0])
batch_delete_error: Sequence[dict[str, UUID | str]] = []
(
documents_to_uuid_map,
changed_documents,
unchanged_documents,
new_documents,
) = self._get_segregated_documents(
data=data,
document_column=document_column,
uuid_column=uuid_column,
collection_name=collection_name,
)
if verbose:
self.log.info(
"Found %s changed documents, %s unchanged documents and %s non-existing documents",
len(changed_documents),
len(unchanged_documents),
len(new_documents),
)
for document in changed_documents:
self.log.info(
"Changed document: %s has %s objects.", document, len(documents_to_uuid_map[document])
)
self.log.info("Non-existing document: %s", ", ".join(new_documents))
if existing == "error" and len(changed_documents):
raise ValueError(
f"Documents {', '.join(changed_documents)} already exists. You can either skip or replace"
f" them by passing 'existing=skip' or 'existing=replace' respectively."
)
elif existing == "skip":
data = data[data[document_column].isin(new_documents)]
if verbose:
self.log.info(
"Since existing=skip, ingesting only non-existing document's object %s", data.shape[0]
)
elif existing == "replace":
total_objects_count = sum([len(documents_to_uuid_map[doc]) for doc in changed_documents])
if verbose:
self.log.info(
"Since existing='replace', deleting %s objects belonging changed documents %s",
total_objects_count,
changed_documents,
)
if list(changed_documents):
batch_delete_error = self._delete_all_documents_objects(
document_keys=list(changed_documents),
document_column=document_column,
collection_name=collection_name,
total_objects_count=total_objects_count,
batch_delete_error=batch_delete_error,
verbose=verbose,
)
data = data[data[document_column].isin(new_documents.union(changed_documents))]
self.log.info("Batch inserting %s objects for non-existing and changed documents.", data.shape[0])
if data.shape[0]:
self.batch_data(
collection_name=collection_name,
data=data,
vector_col=vector_column,
uuid_col=uuid_column,
)
if batch_delete_error:
if batch_delete_error:
self.log.info("Failed to delete %s objects.", len(batch_delete_error))
# Rollback object that were not created properly
self._delete_objects(
[item["uuid"] for item in batch_delete_error],
collection_name=collection_name,
)
if verbose:
collection = self.get_collection(collection_name)
self.log.info(
"Total objects in collection %s : %s ",
collection_name,
collection.aggregate.over_all(total_count=True),
)
return batch_delete_error