Source code for airflow.exceptions

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
# Note: Any AirflowException raised is expected to cause the TaskInstance
#       to be marked in an ERROR state
"""Exceptions used by Airflow."""

from __future__ import annotations

import warnings
from datetime import timedelta
from http import HTTPStatus
from typing import TYPE_CHECKING, Any, NamedTuple

from airflow.utils.trigger_rule import TriggerRule

if TYPE_CHECKING:
    from collections.abc import Sized

    from airflow.models import DagRun


[docs]class AirflowException(Exception): """ Base class for all Airflow's errors. Each custom exception should be derived from this class. """
[docs] status_code = HTTPStatus.INTERNAL_SERVER_ERROR
[docs] def serialize(self): cls = self.__class__ return f"{cls.__module__}.{cls.__name__}", (str(self),), {}
[docs]class AirflowBadRequest(AirflowException): """Raise when the application or server cannot handle the request."""
[docs] status_code = HTTPStatus.BAD_REQUEST
[docs]class AirflowNotFoundException(AirflowException): """Raise when the requested object/resource is not available in the system."""
[docs] status_code = HTTPStatus.NOT_FOUND
[docs]class AirflowConfigException(AirflowException): """Raise when there is configuration problem."""
[docs]class AirflowSensorTimeout(AirflowException): """Raise when there is a timeout on sensor polling."""
[docs]class AirflowRescheduleException(AirflowException): """ Raise when the task should be re-scheduled at a later time. :param reschedule_date: The date when the task should be rescheduled """ def __init__(self, reschedule_date): super().__init__() self.reschedule_date = reschedule_date
[docs] def serialize(self): cls = self.__class__ return f"{cls.__module__}.{cls.__name__}", (), {"reschedule_date": self.reschedule_date}
[docs]class InvalidStatsNameException(AirflowException): """Raise when name of the stats is invalid."""
# Important to inherit BaseException instead of AirflowException->Exception, since this Exception is used # to explicitly interrupt ongoing task. Code that does normal error-handling should not treat # such interrupt as an error that can be handled normally. (Compare with KeyboardInterrupt)
[docs]class AirflowTaskTimeout(BaseException): """Raise when the task execution times-out."""
[docs]class AirflowTaskTerminated(BaseException): """Raise when the task execution is terminated."""
[docs]class AirflowWebServerTimeout(AirflowException): """Raise when the web server times out."""
[docs]class AirflowSkipException(AirflowException): """Raise when the task should be skipped."""
[docs]class AirflowFailException(AirflowException): """Raise when the task should be failed without retrying."""
[docs]class AirflowOptionalProviderFeatureException(AirflowException): """Raise by providers when imports are missing for optional provider features."""
class AirflowInternalRuntimeError(BaseException): """ Airflow Internal runtime error. Indicates that something really terrible happens during the Airflow execution. :meta private: """
[docs]class XComNotFound(AirflowException): """Raise when an XCom reference is being resolved against a non-existent XCom.""" def __init__(self, dag_id: str, task_id: str, key: str) -> None: super().__init__() self.dag_id = dag_id self.task_id = task_id self.key = key
[docs] def __str__(self) -> str: return f'XComArg result from {self.task_id} at {self.dag_id} with key="{self.key}" is not found!'
[docs] def serialize(self): cls = self.__class__ return ( f"{cls.__module__}.{cls.__name__}", (), {"dag_id": self.dag_id, "task_id": self.task_id, "key": self.key}, )
[docs]class UnmappableOperator(AirflowException): """Raise when an operator is not implemented to be mappable."""
[docs]class XComForMappingNotPushed(AirflowException): """Raise when a mapped downstream's dependency fails to push XCom for task mapping."""
[docs] def __str__(self) -> str: return "did not push XCom for task mapping"
[docs]class UnmappableXComTypePushed(AirflowException): """Raise when an unmappable type is pushed as a mapped downstream's dependency.""" def __init__(self, value: Any, *values: Any) -> None: super().__init__(value, *values)
[docs] def __str__(self) -> str: typename = type(self.args[0]).__qualname__ for arg in self.args[1:]: typename = f"{typename}[{type(arg).__qualname__}]" return f"unmappable return type {typename!r}"
[docs]class UnmappableXComLengthPushed(AirflowException): """Raise when the pushed value is too large to map as a downstream's dependency.""" def __init__(self, value: Sized, max_length: int) -> None: super().__init__(value) self.value = value self.max_length = max_length
[docs] def __str__(self) -> str: return f"unmappable return value length: {len(self.value)} > {self.max_length}"
[docs]class AirflowDagCycleException(AirflowException): """Raise when there is a cycle in DAG definition."""
[docs]class AirflowDagDuplicatedIdException(AirflowException): """Raise when a DAG's ID is already used by another DAG.""" def __init__(self, dag_id: str, incoming: str, existing: str) -> None: super().__init__(dag_id, incoming, existing) self.dag_id = dag_id self.incoming = incoming self.existing = existing
[docs] def __str__(self) -> str: return f"Ignoring DAG {self.dag_id} from {self.incoming} - also found in {self.existing}"
[docs]class AirflowClusterPolicyViolation(AirflowException): """Raise when there is a violation of a Cluster Policy in DAG definition."""
[docs]class AirflowClusterPolicySkipDag(AirflowException): """Raise when skipping dag is needed in Cluster Policy."""
[docs]class AirflowClusterPolicyError(AirflowException): """Raise for a Cluster Policy other than AirflowClusterPolicyViolation or AirflowClusterPolicySkipDag."""
[docs]class AirflowTimetableInvalid(AirflowException): """Raise when a DAG has an invalid timetable."""
[docs]class DagNotFound(AirflowNotFoundException): """Raise when a DAG is not available in the system."""
[docs]class DagCodeNotFound(AirflowNotFoundException): """Raise when a DAG code is not available in the system."""
[docs]class DagRunNotFound(AirflowNotFoundException): """Raise when a DAG Run is not available in the system."""
[docs]class DagRunAlreadyExists(AirflowBadRequest): """Raise when creating a DAG run for DAG which already has DAG run entry.""" def __init__(self, dag_run: DagRun) -> None: super().__init__(f"A DAG Run already exists for DAG {dag_run.dag_id} with run id {dag_run.run_id}") self.dag_run = dag_run
[docs] def serialize(self): cls = self.__class__ # Note the DagRun object will be detached here and fails serialization, we need to create a new one from airflow.models import DagRun dag_run = DagRun( state=self.dag_run.state, dag_id=self.dag_run.dag_id, run_id=self.dag_run.run_id, external_trigger=self.dag_run.external_trigger, run_type=self.dag_run.run_type, ) dag_run.id = self.dag_run.id return ( f"{cls.__module__}.{cls.__name__}", (), {"dag_run": dag_run}, )
[docs]class DagFileExists(AirflowBadRequest): """Raise when a DAG ID is still in DagBag i.e., DAG file is in DAG folder.""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) warnings.warn("DagFileExists is deprecated and will be removed.", DeprecationWarning, stacklevel=2)
[docs]class FailStopDagInvalidTriggerRule(AirflowException): """Raise when a dag has 'fail_stop' enabled yet has a non-default trigger rule.""" _allowed_rules = (TriggerRule.ALL_SUCCESS, TriggerRule.ALL_DONE_SETUP_SUCCESS) @classmethod def check(cls, *, fail_stop: bool, trigger_rule: TriggerRule): """ Check that fail_stop dag tasks have allowable trigger rules. :meta private: """ if fail_stop and trigger_rule not in cls._allowed_rules: raise cls()
[docs] def __str__(self) -> str: return f"A 'fail-stop' dag can only have {TriggerRule.ALL_SUCCESS} trigger rule"
[docs]class DuplicateTaskIdFound(AirflowException): """Raise when a Task with duplicate task_id is defined in the same DAG."""
[docs]class TaskAlreadyInTaskGroup(AirflowException): """Raise when a Task cannot be added to a TaskGroup since it already belongs to another TaskGroup.""" def __init__(self, task_id: str, existing_group_id: str | None, new_group_id: str) -> None: super().__init__(task_id, new_group_id) self.task_id = task_id self.existing_group_id = existing_group_id self.new_group_id = new_group_id
[docs] def __str__(self) -> str: if self.existing_group_id is None: existing_group = "the DAG's root group" else: existing_group = f"group {self.existing_group_id!r}" return f"cannot add {self.task_id!r} to {self.new_group_id!r} (already in {existing_group})"
[docs]class SerializationError(AirflowException): """A problem occurred when trying to serialize something."""
[docs]class ParamValidationError(AirflowException): """Raise when DAG params is invalid."""
[docs]class TaskNotFound(AirflowNotFoundException): """Raise when a Task is not available in the system."""
[docs]class TaskInstanceNotFound(AirflowNotFoundException): """Raise when a task instance is not available in the system."""
[docs]class PoolNotFound(AirflowNotFoundException): """Raise when a Pool is not available in the system."""
[docs]class FileSyntaxError(NamedTuple): """Information about a single error in a file."""
[docs] line_no: int | None
[docs] message: str
[docs] def __str__(self): return f"{self.message}. Line number: s{str(self.line_no)},"
[docs]class AirflowFileParseException(AirflowException): """ Raises when connection or variable file can not be parsed. :param msg: The human-readable description of the exception :param file_path: A processed file that contains errors :param parse_errors: File syntax errors """ def __init__(self, msg: str, file_path: str, parse_errors: list[FileSyntaxError]) -> None: super().__init__(msg) self.msg = msg self.file_path = file_path self.parse_errors = parse_errors
[docs] def __str__(self): from airflow.utils.code_utils import prepare_code_snippet from airflow.utils.platform import is_tty result = f"{self.msg}\nFilename: {self.file_path}\n\n" for error_no, parse_error in enumerate(self.parse_errors, 1): result += "=" * 20 + f" Parse error {error_no:3} " + "=" * 20 + "\n" result += f"{parse_error.message}\n" if parse_error.line_no: result += f"Line number: {parse_error.line_no}\n" if parse_error.line_no and is_tty(): result += "\n" + prepare_code_snippet(self.file_path, parse_error.line_no) + "\n" return result
[docs]class ConnectionNotUnique(AirflowException): """Raise when multiple values are found for the same connection ID."""
[docs]class TaskDeferred(BaseException): """ Signal an operator moving to deferred state. Special exception raised to signal that the operator it was raised from wishes to defer until a trigger fires. Triggers can send execution back to task or end the task instance directly. If the trigger should end the task instance itself, ``method_name`` does not matter, and can be None; otherwise, provide the name of the method that should be used when resuming execution in the task. """ def __init__( self, *, trigger, method_name: str, kwargs: dict[str, Any] | None = None, timeout: timedelta | int | float | None = None, ): super().__init__() self.trigger = trigger self.method_name = method_name self.kwargs = kwargs self.timeout: timedelta | None # Check timeout type at runtime if isinstance(timeout, (int, float)): self.timeout = timedelta(seconds=timeout) else: self.timeout = timeout if self.timeout is not None and not hasattr(self.timeout, "total_seconds"): raise ValueError("Timeout value must be a timedelta")
[docs] def serialize(self): cls = self.__class__ return ( f"{cls.__module__}.{cls.__name__}", (), { "trigger": self.trigger, "method_name": self.method_name, "kwargs": self.kwargs, "timeout": self.timeout, }, )
[docs] def __repr__(self) -> str: return f"<TaskDeferred trigger={self.trigger} method={self.method_name}>"
[docs]class TaskDeferralError(AirflowException): """Raised when a task failed during deferral for some reason."""
[docs]class TaskDeferralTimeout(AirflowException): """Raise when there is a timeout on the deferral."""
# The try/except handling is needed after we moved all k8s classes to cncf.kubernetes provider # These two exceptions are used internally by Kubernetes Executor but also by PodGenerator, so we need # to leave them here in case older version of cncf.kubernetes provider is used to run KubernetesPodOperator # and it raises one of those exceptions. The code should be backwards compatible even if you import # and try/except the exception using direct imports from airflow.exceptions. # 1) if you have old provider, both provider and pod generator will throw the "airflow.exceptions" exception. # 2) if you have new provider, both provider and pod generator will throw the # "airflow.providers.cncf.kubernetes" as it will be imported here from the provider. try: from airflow.providers.cncf.kubernetes.pod_generator import PodMutationHookException except ImportError:
[docs] class PodMutationHookException(AirflowException): # type: ignore[no-redef] """Raised when exception happens during Pod Mutation Hook execution."""
try: from airflow.providers.cncf.kubernetes.pod_generator import PodReconciliationError except ImportError:
[docs] class PodReconciliationError(AirflowException): # type: ignore[no-redef] """Raised when an error is encountered while trying to merge pod configs."""
[docs]class RemovedInAirflow3Warning(DeprecationWarning): """Issued for usage of deprecated features that will be removed in Airflow3."""
[docs] deprecated_since: str | None = None
"Indicates the airflow version that started raising this deprecation warning"
[docs]class AirflowProviderDeprecationWarning(DeprecationWarning): """Issued for usage of deprecated features of Airflow provider."""
[docs] deprecated_provider_since: str | None = None
"Indicates the provider version that started raising this deprecation warning"
[docs]class DeserializingResultError(ValueError): """Raised when an error is encountered while a pickling library deserializes a pickle file."""
[docs] def __str__(self): return ( "Error deserializing result. Note that result deserialization " "is not supported across major Python versions. Cause: " + str(self.__cause__) )
[docs]class UnknownExecutorException(ValueError): """Raised when an attempt is made to load an executor which is not configured."""

Was this entry helpful?