# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
AWS ECS Executor Utilities.
Data classes and utility functions used by the ECS executor.
"""
from __future__ import annotations
import datetime
from collections import defaultdict
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, Callable
from inflection import camelize
from airflow.providers.amazon.aws.executors.utils.base_config_keys import BaseConfigKeys
from airflow.utils.state import State
if TYPE_CHECKING:
from airflow.models.taskinstance import TaskInstanceKey
[docs]ExecutorConfigFunctionType = Callable[[CommandType], dict]
[docs]ExecutorConfigType = dict[str, Any]
[docs]ECS_LAUNCH_TYPE_EC2 = "EC2"
[docs]ECS_LAUNCH_TYPE_FARGATE = "FARGATE"
[docs]CONFIG_GROUP_NAME = "aws_ecs_executor"
[docs]CONFIG_DEFAULTS = {
"conn_id": "aws_default",
"max_run_task_attempts": "3",
"assign_public_ip": "False",
"platform_version": "LATEST",
"check_health_on_startup": "True",
}
@dataclass
[docs]class EcsQueuedTask:
"""Represents an ECS task that is queued. The task will be run in the next heartbeat."""
[docs] executor_config: ExecutorConfigType
[docs] next_attempt_time: datetime.datetime
@dataclass
[docs]class EcsTaskInfo:
"""Contains information about a currently running ECS task."""
[docs] config: ExecutorConfigType
[docs]class RunTaskKwargsConfigKeys(BaseConfigKeys):
"""Keys loaded into the config which are valid ECS run_task kwargs."""
[docs] ASSIGN_PUBLIC_IP = "assign_public_ip"
[docs] CAPACITY_PROVIDER_STRATEGY = "capacity_provider_strategy"
[docs] CONTAINER_NAME = "container_name"
[docs] LAUNCH_TYPE = "launch_type"
[docs] SECURITY_GROUPS = "security_groups"
[docs] TASK_DEFINITION = "task_definition"
[docs]class AllEcsConfigKeys(RunTaskKwargsConfigKeys):
"""All keys loaded into the config which are related to the ECS Executor."""
[docs] AWS_CONN_ID = "conn_id"
[docs] CHECK_HEALTH_ON_STARTUP = "check_health_on_startup"
[docs] MAX_RUN_TASK_ATTEMPTS = "max_run_task_attempts"
[docs] REGION_NAME = "region_name"
[docs] RUN_TASK_KWARGS = "run_task_kwargs"
[docs]class EcsExecutorException(Exception):
"""Thrown when something unexpected has occurred within the ECS ecosystem."""
[docs]class EcsExecutorTask:
"""Data Transfer Object for an ECS Task."""
def __init__(
self,
task_arn: str,
last_status: str,
desired_status: str,
containers: list[dict[str, Any]],
started_at: Any | None = None,
stopped_reason: str | None = None,
external_executor_id: str | None = None,
):
self.task_arn = task_arn
self.last_status = last_status
self.desired_status = desired_status
self.containers = containers
self.started_at = started_at
self.stopped_reason = stopped_reason
self.external_executor_id = external_executor_id
[docs] def get_task_state(self) -> str:
"""
Determine the state of an ECS task based on its status and other relevant attributes.
It can return one of the following statuses:
QUEUED - Task is being provisioned.
RUNNING - Task is launched on ECS.
REMOVED - Task provisioning has failed for some reason. See `stopped_reason`.
FAILED - Task is completed and at least one container has failed.
SUCCESS - Task is completed and all containers have succeeded.
"""
if self.last_status == "RUNNING":
return State.RUNNING
elif self.desired_status == "RUNNING":
return State.QUEUED
is_finished = self.desired_status == "STOPPED"
has_exit_codes = all(["exit_code" in x for x in self.containers])
# Sometimes ECS tasks may time out.
if not self.started_at and is_finished:
return State.REMOVED
if not is_finished or not has_exit_codes:
return State.RUNNING
all_containers_succeeded = all([x["exit_code"] == 0 for x in self.containers])
return State.SUCCESS if all_containers_succeeded else State.FAILED
[docs] def __repr__(self):
"""Return a string representation of the ECS task."""
return f"({self.task_arn}, {self.last_status}->{self.desired_status}, {self.get_task_state()})"
[docs]class EcsTaskCollection:
"""A five-way dictionary between Airflow task ids, Airflow cmds, ECS ARNs, and ECS task objects."""
def __init__(self):
self.key_to_arn: dict[TaskInstanceKey, str] = {}
self.arn_to_key: dict[str, TaskInstanceKey] = {}
self.tasks: dict[str, EcsExecutorTask] = {}
self.key_to_failure_counts: dict[TaskInstanceKey, int] = defaultdict(int)
self.key_to_task_info: dict[TaskInstanceKey, EcsTaskInfo] = {}
[docs] def add_task(
self,
task: EcsExecutorTask,
airflow_task_key: TaskInstanceKey,
queue: str,
airflow_cmd: CommandType,
exec_config: ExecutorConfigType,
attempt_number: int,
):
"""Add a task to the collection."""
arn = task.task_arn
self.tasks[arn] = task
self.key_to_arn[airflow_task_key] = arn
self.arn_to_key[arn] = airflow_task_key
self.key_to_task_info[airflow_task_key] = EcsTaskInfo(airflow_cmd, queue, exec_config)
self.key_to_failure_counts[airflow_task_key] = attempt_number
[docs] def update_task(self, task: EcsExecutorTask):
"""Update the state of the given task based on task ARN."""
self.tasks[task.task_arn] = task
[docs] def task_by_key(self, task_key: TaskInstanceKey) -> EcsExecutorTask:
"""Get a task by Airflow Instance Key."""
arn = self.key_to_arn[task_key]
return self.task_by_arn(arn)
[docs] def task_by_arn(self, arn) -> EcsExecutorTask:
"""Get a task by AWS ARN."""
return self.tasks[arn]
[docs] def pop_by_key(self, task_key: TaskInstanceKey) -> EcsExecutorTask:
"""Delete task from collection based off of Airflow Task Instance Key."""
arn = self.key_to_arn[task_key]
task = self.tasks[arn]
del self.key_to_arn[task_key]
del self.key_to_task_info[task_key]
del self.arn_to_key[arn]
del self.tasks[arn]
if task_key in self.key_to_failure_counts:
del self.key_to_failure_counts[task_key]
return task
[docs] def get_all_arns(self) -> list[str]:
"""Get all AWS ARNs in collection."""
return list(self.key_to_arn.values())
[docs] def get_all_task_keys(self) -> list[TaskInstanceKey]:
"""Get all Airflow Task Keys in collection."""
return list(self.key_to_arn.keys())
[docs] def failure_count_by_key(self, task_key: TaskInstanceKey) -> int:
"""Get the number of times a task has failed given an Airflow Task Key."""
return self.key_to_failure_counts[task_key]
[docs] def increment_failure_count(self, task_key: TaskInstanceKey):
"""Increment the failure counter given an Airflow Task Key."""
self.key_to_failure_counts[task_key] += 1
[docs] def info_by_key(self, task_key: TaskInstanceKey) -> EcsTaskInfo:
"""Get the Airflow Command given an Airflow task key."""
return self.key_to_task_info[task_key]
[docs] def __getitem__(self, value):
"""Get a task by AWS ARN."""
return self.task_by_arn(value)
[docs] def __len__(self):
"""Determine the number of tasks in collection."""
return len(self.tasks)
def _recursive_flatten_dict(nested_dict):
"""
Recursively unpack a nested dict and return it as a flat dict.
For example, _flatten_dict({'a': 'a', 'b': 'b', 'c': {'d': 'd'}}) returns {'a': 'a', 'b': 'b', 'd': 'd'}.
"""
items = []
for key, value in nested_dict.items():
if isinstance(value, dict):
items.extend(_recursive_flatten_dict(value).items())
else:
items.append((key, value))
return dict(items)
[docs]def parse_assign_public_ip(assign_public_ip, is_launch_type_ec2=False):
"""Convert "assign_public_ip" from True/False to ENABLE/DISABLE."""
# If the launch type is EC2, you cannot/should not provide the assignPublicIp parameter (which is
# specific to Fargate)
if not is_launch_type_ec2:
return "ENABLED" if assign_public_ip == "True" else "DISABLED"
[docs]def camelize_dict_keys(nested_dict) -> dict:
"""Accept a potentially nested dictionary and recursively convert all keys into camelCase."""
result = {}
for key, value in nested_dict.items():
new_key = camelize(key, uppercase_first_letter=False)
if isinstance(value, dict) and (key.lower() != "tags"):
# The key name on tags can be whatever the user wants, and we should not mess with them.
result[new_key] = camelize_dict_keys(value)
else:
result[new_key] = nested_dict[key]
return result