# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""This module contains the Amazon SageMaker Unified Studio Notebook hook."""
from __future__ import annotations
import time
from sagemaker_studio import ClientConfig
from sagemaker_studio.sagemaker_studio_api import SageMakerStudioAPI
from airflow.exceptions import AirflowException
from airflow.hooks.base import BaseHook
from airflow.providers.amazon.aws.utils.sagemaker_unified_studio import is_local_runner
[docs]
class SageMakerNotebookHook(BaseHook):
"""
Interact with Sagemaker Unified Studio Workflows.
This hook provides a wrapper around the Sagemaker Workflows Notebook Execution API.
Examples:
.. code-block:: python
from airflow.providers.amazon.aws.hooks.sagemaker_unified_studio import SageMakerNotebookHook
notebook_hook = SageMakerNotebookHook(
input_config={"input_path": "path/to/notebook.ipynb", "input_params": {"param1": "value1"}},
output_config={"output_uri": "folder/output/location/prefix", "output_formats": "NOTEBOOK"},
execution_name="notebook_execution",
waiter_delay=10,
waiter_max_attempts=1440,
)
:param execution_name: The name of the notebook job to be executed, this is same as task_id.
:param input_config: Configuration for the input file.
Example: {'input_path': 'folder/input/notebook.ipynb', 'input_params': {'param1': 'value1'}}
:param output_config: Configuration for the output format. It should include an output_formats parameter to specify the output format.
Example: {'output_formats': ['NOTEBOOK']}
:param compute: compute configuration to use for the notebook execution. This is a required attribute
if the execution is on a remote compute.
Example: { "instance_type": "ml.m5.large", "volume_size_in_gb": 30, "volume_kms_key_id": "", "image_uri": "string", "container_entrypoint": [ "string" ]}
:param termination_condition: conditions to match to terminate the remote execution.
Example: { "MaxRuntimeInSeconds": 3600 }
:param tags: tags to be associated with the remote execution runs.
Example: { "md_analytics": "logs" }
:param waiter_delay: Interval in seconds to check the task execution status.
:param waiter_max_attempts: Number of attempts to wait before returning FAILED.
"""
def __init__(
self,
execution_name: str,
input_config: dict | None = None,
output_config: dict | None = None,
compute: dict | None = None,
termination_condition: dict | None = None,
tags: dict | None = None,
waiter_delay: int = 10,
waiter_max_attempts: int = 1440,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self._sagemaker_studio = SageMakerStudioAPI(self._get_sagemaker_studio_config())
[docs]
self.execution_name = execution_name
[docs]
self.output_config = output_config or {"output_formats": ["NOTEBOOK"]}
[docs]
self.termination_condition = termination_condition or {}
[docs]
self.waiter_delay = waiter_delay
[docs]
self.waiter_max_attempts = waiter_max_attempts
def _get_sagemaker_studio_config(self):
config = ClientConfig()
config.overrides["execution"] = {"local": is_local_runner()}
return config
def _format_start_execution_input_config(self):
config = {
"notebook_config": {
"input_path": self.input_config.get("input_path"),
"input_parameters": self.input_config.get("input_params"),
},
}
return config
def _format_start_execution_output_config(self):
output_formats = self.output_config.get("output_formats")
config = {
"notebook_config": {
"output_formats": output_formats,
}
}
return config
[docs]
def start_notebook_execution(self):
start_execution_params = {
"execution_name": self.execution_name,
"execution_type": "NOTEBOOK",
"input_config": self._format_start_execution_input_config(),
"output_config": self._format_start_execution_output_config(),
"termination_condition": self.termination_condition,
"tags": self.tags,
}
if self.compute:
start_execution_params["compute"] = self.compute
else:
start_execution_params["compute"] = {"instance_type": "ml.m4.xlarge"}
print(start_execution_params)
return self._sagemaker_studio.execution_client.start_execution(**start_execution_params)
[docs]
def wait_for_execution_completion(self, execution_id, context):
wait_attempts = 0
while wait_attempts < self.waiter_max_attempts:
wait_attempts += 1
time.sleep(self.waiter_delay)
response = self._sagemaker_studio.execution_client.get_execution(execution_id=execution_id)
error_message = response.get("error_details", {}).get("error_message")
status = response["status"]
if "files" in response:
self._set_xcom_files(response["files"], context)
if "s3_path" in response:
self._set_xcom_s3_path(response["s3_path"], context)
ret = self._handle_state(execution_id, status, error_message)
if ret:
return ret
# If timeout, handle state FAILED with timeout message
return self._handle_state(execution_id, "FAILED", "Execution timed out")
def _set_xcom_files(self, files, context):
if not context:
error_message = "context is required"
raise AirflowException(error_message)
for file in files:
context["ti"].xcom_push(
key=f"{file['display_name']}.{file['file_format']}",
value=file["file_path"],
)
def _set_xcom_s3_path(self, s3_path, context):
if not context:
error_message = "context is required"
raise AirflowException(error_message)
context["ti"].xcom_push(
key="s3_path",
value=s3_path,
)
def _handle_state(self, execution_id, status, error_message):
finished_states = ["COMPLETED"]
in_progress_states = ["IN_PROGRESS", "STOPPING"]
if status in in_progress_states:
info_message = f"Execution {execution_id} is still in progress with state:{status}, will check for a terminal status again in {self.waiter_delay}"
self.log.info(info_message)
return None
execution_message = f"Exiting Execution {execution_id} State: {status}"
if status in finished_states:
self.log.info(execution_message)
return {"Status": status, "ExecutionId": execution_id}
else:
log_error_message = f"Execution {execution_id} failed with error: {error_message}"
self.log.error(log_error_message)
if error_message == "":
error_message = execution_message
raise AirflowException(error_message)