# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations
import time
from collections.abc import Sequence
from datetime import timedelta
from typing import TYPE_CHECKING, Any
from airflow.configuration import conf
from airflow.exceptions import AirflowException
from airflow.models import BaseOperator
from airflow.providers.amazon.aws.hooks.redshift_cluster import RedshiftHook
from airflow.providers.amazon.aws.triggers.redshift_cluster import (
RedshiftCreateClusterSnapshotTrigger,
RedshiftCreateClusterTrigger,
RedshiftDeleteClusterTrigger,
RedshiftPauseClusterTrigger,
RedshiftResumeClusterTrigger,
)
from airflow.providers.amazon.aws.utils import validate_execute_complete_event
from airflow.utils.helpers import prune_dict
if TYPE_CHECKING:
from airflow.utils.context import Context
[docs]class RedshiftCreateClusterOperator(BaseOperator):
"""
Creates a new cluster with the specified parameters.
.. seealso::
For more information on how to use this operator, take a look at the guide:
:ref:`howto/operator:RedshiftCreateClusterOperator`
:param cluster_identifier: A unique identifier for the cluster.
:param node_type: The node type to be provisioned for the cluster.
Valid Values: ``ds2.xlarge``, ``ds2.8xlarge``, ``dc1.large``,
``dc1.8xlarge``, ``dc2.large``, ``dc2.8xlarge``, ``ra3.xlplus``,
``ra3.4xlarge``, and ``ra3.16xlarge``.
:param master_username: The username associated with the admin user account for
the cluster that is being created.
:param master_user_password: The password associated with the admin user account for
the cluster that is being created.
:param cluster_type: The type of the cluster ``single-node`` or ``multi-node``.
The default value is ``multi-node``.
:param db_name: The name of the first database to be created when the cluster is created.
:param number_of_nodes: The number of compute nodes in the cluster.
This param require when ``cluster_type`` is ``multi-node``.
:param cluster_security_groups: A list of security groups to be associated with this cluster.
:param vpc_security_group_ids: A list of VPC security groups to be associated with the cluster.
:param cluster_subnet_group_name: The name of a cluster subnet group to be associated with this cluster.
:param availability_zone: The EC2 Availability Zone (AZ).
:param preferred_maintenance_window: The time range (in UTC) during which automated cluster
maintenance can occur.
:param cluster_parameter_group_name: The name of the parameter group to be associated with this cluster.
:param automated_snapshot_retention_period: The number of days that automated snapshots are retained.
The default value is ``1``.
:param manual_snapshot_retention_period: The default number of days to retain a manual snapshot.
:param port: The port number on which the cluster accepts incoming connections.
The Default value is ``5439``.
:param cluster_version: The version of a Redshift engine software that you want to deploy on the cluster.
:param allow_version_upgrade: Whether major version upgrades can be applied during the maintenance window.
The Default value is ``True``.
:param publicly_accessible: Whether cluster can be accessed from a public network.
:param encrypted: Whether data in the cluster is encrypted at rest.
The default value is ``False``.
:param hsm_client_certificate_identifier: Name of the HSM client certificate
the Amazon Redshift cluster uses to retrieve the data.
:param hsm_configuration_identifier: Name of the HSM configuration
:param elastic_ip: The Elastic IP (EIP) address for the cluster.
:param tags: A list of tag instances
:param kms_key_id: KMS key id of encryption key.
:param enhanced_vpc_routing: Whether to create the cluster with enhanced VPC routing enabled
Default value is ``False``.
:param additional_info: Reserved
:param iam_roles: A list of IAM roles that can be used by the cluster to access other AWS services.
:param maintenance_track_name: Name of the maintenance track for the cluster.
:param snapshot_schedule_identifier: A unique identifier for the snapshot schedule.
:param availability_zone_relocation: Enable relocation for a Redshift cluster
between Availability Zones after the cluster is created.
:param aqua_configuration_status: The cluster is configured to use AQUA .
:param default_iam_role_arn: ARN for the IAM role.
:param aws_conn_id: str | None = The Airflow connection used for AWS credentials.
The default connection id is ``aws_default``.
:param wait_for_completion: Whether wait for the cluster to be in ``available`` state
:param max_attempt: The maximum number of attempts to be made. Default: 5
:param poll_interval: The amount of time in seconds to wait between attempts. Default: 60
:param deferrable: If True, the operator will run in deferrable mode
"""
[docs] template_fields: Sequence[str] = (
"cluster_identifier",
"cluster_type",
"node_type",
"master_username",
"master_user_password",
"cluster_type",
"db_name",
"number_of_nodes",
"cluster_security_groups",
"vpc_security_group_ids",
"cluster_subnet_group_name",
"availability_zone",
"preferred_maintenance_window",
"cluster_parameter_group_name",
"automated_snapshot_retention_period",
"manual_snapshot_retention_period",
"port",
"cluster_version",
"allow_version_upgrade",
"publicly_accessible",
"encrypted",
"hsm_client_certificate_identifier",
"hsm_configuration_identifier",
"elastic_ip",
"tags",
"kms_key_id",
"enhanced_vpc_routing",
"additional_info",
"iam_roles",
"maintenance_track_name",
"snapshot_schedule_identifier",
"availability_zone_relocation",
"aqua_configuration_status",
"default_iam_role_arn",
)
def __init__(
self,
*,
cluster_identifier: str,
node_type: str,
master_username: str,
master_user_password: str,
cluster_type: str = "multi-node",
db_name: str = "dev",
number_of_nodes: int = 1,
cluster_security_groups: list[str] | None = None,
vpc_security_group_ids: list[str] | None = None,
cluster_subnet_group_name: str | None = None,
availability_zone: str | None = None,
preferred_maintenance_window: str | None = None,
cluster_parameter_group_name: str | None = None,
automated_snapshot_retention_period: int = 1,
manual_snapshot_retention_period: int | None = None,
port: int = 5439,
cluster_version: str = "1.0",
allow_version_upgrade: bool = True,
publicly_accessible: bool = True,
encrypted: bool = False,
hsm_client_certificate_identifier: str | None = None,
hsm_configuration_identifier: str | None = None,
elastic_ip: str | None = None,
tags: list[Any] | None = None,
kms_key_id: str | None = None,
enhanced_vpc_routing: bool = False,
additional_info: str | None = None,
iam_roles: list[str] | None = None,
maintenance_track_name: str | None = None,
snapshot_schedule_identifier: str | None = None,
availability_zone_relocation: bool | None = None,
aqua_configuration_status: str | None = None,
default_iam_role_arn: str | None = None,
aws_conn_id: str | None = "aws_default",
wait_for_completion: bool = False,
max_attempt: int = 5,
poll_interval: int = 60,
deferrable: bool = conf.getboolean("operators", "default_deferrable", fallback=False),
**kwargs,
):
super().__init__(**kwargs)
self.cluster_identifier = cluster_identifier
self.node_type = node_type
self.master_username = master_username
self.master_user_password = master_user_password
self.cluster_type = cluster_type
self.db_name = db_name
self.number_of_nodes = number_of_nodes
self.cluster_security_groups = cluster_security_groups
self.vpc_security_group_ids = vpc_security_group_ids
self.cluster_subnet_group_name = cluster_subnet_group_name
self.availability_zone = availability_zone
self.preferred_maintenance_window = preferred_maintenance_window
self.cluster_parameter_group_name = cluster_parameter_group_name
self.automated_snapshot_retention_period = automated_snapshot_retention_period
self.manual_snapshot_retention_period = manual_snapshot_retention_period
self.port = port
self.cluster_version = cluster_version
self.allow_version_upgrade = allow_version_upgrade
self.publicly_accessible = publicly_accessible
self.encrypted = encrypted
self.hsm_client_certificate_identifier = hsm_client_certificate_identifier
self.hsm_configuration_identifier = hsm_configuration_identifier
self.elastic_ip = elastic_ip
self.tags = tags
self.kms_key_id = kms_key_id
self.enhanced_vpc_routing = enhanced_vpc_routing
self.additional_info = additional_info
self.iam_roles = iam_roles
self.maintenance_track_name = maintenance_track_name
self.snapshot_schedule_identifier = snapshot_schedule_identifier
self.availability_zone_relocation = availability_zone_relocation
self.aqua_configuration_status = aqua_configuration_status
self.default_iam_role_arn = default_iam_role_arn
self.aws_conn_id = aws_conn_id
self.wait_for_completion = wait_for_completion
self.max_attempt = max_attempt
self.poll_interval = poll_interval
self.deferrable = deferrable
self.kwargs = kwargs
[docs] def execute(self, context: Context):
redshift_hook = RedshiftHook(aws_conn_id=self.aws_conn_id)
self.log.info("Creating Redshift cluster %s", self.cluster_identifier)
params: dict[str, Any] = {}
if self.db_name:
params["DBName"] = self.db_name
if self.cluster_type:
params["ClusterType"] = self.cluster_type
if self.cluster_type == "multi-node":
params["NumberOfNodes"] = self.number_of_nodes
if self.cluster_security_groups:
params["ClusterSecurityGroups"] = self.cluster_security_groups
if self.vpc_security_group_ids:
params["VpcSecurityGroupIds"] = self.vpc_security_group_ids
if self.cluster_subnet_group_name:
params["ClusterSubnetGroupName"] = self.cluster_subnet_group_name
if self.availability_zone:
params["AvailabilityZone"] = self.availability_zone
if self.preferred_maintenance_window:
params["PreferredMaintenanceWindow"] = self.preferred_maintenance_window
if self.cluster_parameter_group_name:
params["ClusterParameterGroupName"] = self.cluster_parameter_group_name
if self.automated_snapshot_retention_period:
params["AutomatedSnapshotRetentionPeriod"] = self.automated_snapshot_retention_period
if self.manual_snapshot_retention_period:
params["ManualSnapshotRetentionPeriod"] = self.manual_snapshot_retention_period
if self.port:
params["Port"] = self.port
if self.cluster_version:
params["ClusterVersion"] = self.cluster_version
if self.allow_version_upgrade:
params["AllowVersionUpgrade"] = self.allow_version_upgrade
if self.encrypted:
params["Encrypted"] = self.encrypted
if self.hsm_client_certificate_identifier:
params["HsmClientCertificateIdentifier"] = self.hsm_client_certificate_identifier
if self.hsm_configuration_identifier:
params["HsmConfigurationIdentifier"] = self.hsm_configuration_identifier
if self.elastic_ip:
params["ElasticIp"] = self.elastic_ip
if self.tags:
params["Tags"] = self.tags
if self.kms_key_id:
params["KmsKeyId"] = self.kms_key_id
if self.enhanced_vpc_routing:
params["EnhancedVpcRouting"] = self.enhanced_vpc_routing
if self.additional_info:
params["AdditionalInfo"] = self.additional_info
if self.iam_roles:
params["IamRoles"] = self.iam_roles
if self.maintenance_track_name:
params["MaintenanceTrackName"] = self.maintenance_track_name
if self.snapshot_schedule_identifier:
params["SnapshotScheduleIdentifier"] = self.snapshot_schedule_identifier
if self.availability_zone_relocation:
params["AvailabilityZoneRelocation"] = self.availability_zone_relocation
if self.aqua_configuration_status:
params["AquaConfigurationStatus"] = self.aqua_configuration_status
if self.default_iam_role_arn:
params["DefaultIamRoleArn"] = self.default_iam_role_arn
# PubliclyAccessible is True by default on Redshift side, hence, we should always set it regardless
# of its value
params["PubliclyAccessible"] = self.publicly_accessible
cluster = redshift_hook.create_cluster(
self.cluster_identifier,
self.node_type,
self.master_username,
self.master_user_password,
params,
)
if self.deferrable:
self.defer(
trigger=RedshiftCreateClusterTrigger(
cluster_identifier=self.cluster_identifier,
waiter_delay=self.poll_interval,
waiter_max_attempts=self.max_attempt,
aws_conn_id=self.aws_conn_id,
),
method_name="execute_complete",
)
if self.wait_for_completion:
redshift_hook.get_conn().get_waiter("cluster_available").wait(
ClusterIdentifier=self.cluster_identifier,
WaiterConfig={
"Delay": self.poll_interval,
"MaxAttempts": self.max_attempt,
},
)
self.log.info("Created Redshift cluster %s", self.cluster_identifier)
self.log.info(cluster)
[docs] def execute_complete(self, context: Context, event: dict[str, Any] | None = None) -> None:
event = validate_execute_complete_event(event)
if event["status"] != "success":
raise AirflowException(f"Error creating cluster: {event}")
[docs]class RedshiftCreateClusterSnapshotOperator(BaseOperator):
"""
Creates a manual snapshot of the specified cluster. The cluster must be in the available state.
.. seealso::
For more information on how to use this operator, take a look at the guide:
:ref:`howto/operator:RedshiftCreateClusterSnapshotOperator`
:param snapshot_identifier: A unique identifier for the snapshot that you are requesting
:param cluster_identifier: The cluster identifier for which you want a snapshot
:param retention_period: The number of days that a manual snapshot is retained.
If the value is -1, the manual snapshot is retained indefinitely.
:param tags: A list of tag instances
:param wait_for_completion: Whether wait for the cluster snapshot to be in ``available`` state
:param poll_interval: Time (in seconds) to wait between two consecutive calls to check state
:param max_attempt: The maximum number of attempts to be made to check the state
:param aws_conn_id: The Airflow connection used for AWS credentials.
The default connection id is ``aws_default``
:param deferrable: If True, the operator will run as a deferrable operator.
"""
[docs] template_fields: Sequence[str] = (
"cluster_identifier",
"snapshot_identifier",
)
def __init__(
self,
*,
snapshot_identifier: str,
cluster_identifier: str,
retention_period: int = -1,
tags: list[Any] | None = None,
wait_for_completion: bool = False,
poll_interval: int = 15,
max_attempt: int = 20,
aws_conn_id: str | None = "aws_default",
deferrable: bool = conf.getboolean("operators", "default_deferrable", fallback=False),
**kwargs,
):
super().__init__(**kwargs)
self.snapshot_identifier = snapshot_identifier
self.cluster_identifier = cluster_identifier
self.retention_period = retention_period
self.tags = tags
self.wait_for_completion = wait_for_completion
self.poll_interval = poll_interval
self.max_attempt = max_attempt
self.deferrable = deferrable
self.aws_conn_id = aws_conn_id
self.redshift_hook = RedshiftHook(aws_conn_id=aws_conn_id)
[docs] def execute(self, context: Context) -> Any:
cluster_state = self.redshift_hook.cluster_status(cluster_identifier=self.cluster_identifier)
if cluster_state != "available":
raise AirflowException(
"Redshift cluster must be in available state. "
f"Redshift cluster current state is {cluster_state}"
)
self.redshift_hook.create_cluster_snapshot(
cluster_identifier=self.cluster_identifier,
snapshot_identifier=self.snapshot_identifier,
retention_period=self.retention_period,
tags=self.tags,
)
if self.deferrable:
self.defer(
trigger=RedshiftCreateClusterSnapshotTrigger(
cluster_identifier=self.cluster_identifier,
waiter_delay=self.poll_interval,
waiter_max_attempts=self.max_attempt,
aws_conn_id=self.aws_conn_id,
),
method_name="execute_complete",
# timeout is set to ensure that if a trigger dies, the timeout does not restart
# 60 seconds is added to allow the trigger to exit gracefully (i.e. yield TriggerEvent)
timeout=timedelta(seconds=self.max_attempt * self.poll_interval + 60),
)
if self.wait_for_completion:
self.redshift_hook.get_conn().get_waiter("snapshot_available").wait(
ClusterIdentifier=self.cluster_identifier,
WaiterConfig={
"Delay": self.poll_interval,
"MaxAttempts": self.max_attempt,
},
)
[docs] def execute_complete(self, context: Context, event: dict[str, Any] | None = None) -> None:
event = validate_execute_complete_event(event)
if event["status"] != "success":
raise AirflowException(f"Error creating snapshot: {event}")
self.log.info("Cluster snapshot created.")
[docs]class RedshiftDeleteClusterSnapshotOperator(BaseOperator):
"""
Deletes the specified manual snapshot.
.. seealso::
For more information on how to use this operator, take a look at the guide:
:ref:`howto/operator:RedshiftDeleteClusterSnapshotOperator`
:param snapshot_identifier: A unique identifier for the snapshot that you are requesting
:param cluster_identifier: The unique identifier of the cluster the snapshot was created from
:param wait_for_completion: Whether wait for cluster deletion or not
The default value is ``True``
:param aws_conn_id: The Airflow connection used for AWS credentials.
The default connection id is ``aws_default``
:param poll_interval: Time (in seconds) to wait between two consecutive calls to check snapshot state
"""
[docs] template_fields: Sequence[str] = (
"cluster_identifier",
"snapshot_identifier",
)
def __init__(
self,
*,
snapshot_identifier: str,
cluster_identifier: str,
wait_for_completion: bool = True,
aws_conn_id: str | None = "aws_default",
poll_interval: int = 10,
**kwargs,
):
super().__init__(**kwargs)
self.snapshot_identifier = snapshot_identifier
self.cluster_identifier = cluster_identifier
self.wait_for_completion = wait_for_completion
self.poll_interval = poll_interval
self.redshift_hook = RedshiftHook(aws_conn_id=aws_conn_id)
[docs] def execute(self, context: Context) -> Any:
self.redshift_hook.get_conn().delete_cluster_snapshot(
SnapshotClusterIdentifier=self.cluster_identifier,
SnapshotIdentifier=self.snapshot_identifier,
)
if self.wait_for_completion:
while self.get_status() is not None:
time.sleep(self.poll_interval)
[docs] def get_status(self) -> str:
return self.redshift_hook.get_cluster_snapshot_status(
snapshot_identifier=self.snapshot_identifier,
)
[docs]class RedshiftResumeClusterOperator(BaseOperator):
"""
Resume a paused AWS Redshift Cluster.
.. seealso::
For more information on how to use this operator, take a look at the guide:
:ref:`howto/operator:RedshiftResumeClusterOperator`
:param cluster_identifier: Unique identifier of the AWS Redshift cluster
:param aws_conn_id: The Airflow connection used for AWS credentials.
The default connection id is ``aws_default``
:param poll_interval: Time (in seconds) to wait between two consecutive calls to check cluster state
:param max_attempts: The maximum number of attempts to check the state of the cluster.
:param wait_for_completion: If True, the operator will wait for the cluster to be in the
`resumed` state. Default is False.
:param deferrable: If True, the operator will run as a deferrable operator.
"""
[docs] template_fields: Sequence[str] = ("cluster_identifier",)
def __init__(
self,
*,
cluster_identifier: str,
aws_conn_id: str | None = "aws_default",
wait_for_completion: bool = False,
deferrable: bool = conf.getboolean("operators", "default_deferrable", fallback=False),
poll_interval: int = 30,
max_attempts: int = 30,
**kwargs,
):
super().__init__(**kwargs)
self.cluster_identifier = cluster_identifier
self.aws_conn_id = aws_conn_id
self.wait_for_completion = wait_for_completion
self.deferrable = deferrable
self.max_attempts = max_attempts
self.poll_interval = poll_interval
# These parameters are used to address an issue with the boto3 API where the API
# prematurely reports the cluster as available to receive requests. This causes the cluster
# to reject initial attempts to resume the cluster despite reporting the correct state.
self._remaining_attempts = 10
self._attempt_interval = 15
[docs] def execute(self, context: Context):
redshift_hook = RedshiftHook(aws_conn_id=self.aws_conn_id)
self.log.info("Starting resume cluster")
while self._remaining_attempts:
try:
redshift_hook.get_conn().resume_cluster(ClusterIdentifier=self.cluster_identifier)
break
except redshift_hook.get_conn().exceptions.InvalidClusterStateFault as error:
self._remaining_attempts -= 1
if self._remaining_attempts:
self.log.error(
"Unable to resume cluster. %d attempts remaining.", self._remaining_attempts
)
time.sleep(self._attempt_interval)
else:
raise error
if self.wait_for_completion:
if self.deferrable:
cluster_state = redshift_hook.cluster_status(cluster_identifier=self.cluster_identifier)
if cluster_state == "available":
self.log.info("Resumed cluster successfully")
elif cluster_state == "deleting":
raise AirflowException(
"Unable to resume cluster since cluster is currently in status: %s", cluster_state
)
else:
self.defer(
trigger=RedshiftResumeClusterTrigger(
cluster_identifier=self.cluster_identifier,
waiter_delay=self.poll_interval,
waiter_max_attempts=self.max_attempts,
aws_conn_id=self.aws_conn_id,
),
method_name="execute_complete",
# timeout is set to ensure that if a trigger dies, the timeout does not restart
# 60 seconds is added to allow the trigger to exit gracefully (i.e. yield TriggerEvent)
timeout=timedelta(seconds=self.max_attempts * self.poll_interval + 60),
)
else:
waiter = redshift_hook.get_waiter("cluster_resumed")
waiter.wait(
ClusterIdentifier=self.cluster_identifier,
WaiterConfig={
"Delay": self.poll_interval,
"MaxAttempts": self.max_attempts,
},
)
[docs] def execute_complete(self, context: Context, event: dict[str, Any] | None = None) -> None:
event = validate_execute_complete_event(event)
if event["status"] != "success":
raise AirflowException(f"Error resuming cluster: {event}")
self.log.info("Resumed cluster successfully")
[docs]class RedshiftPauseClusterOperator(BaseOperator):
"""
Pause an AWS Redshift Cluster if it has status `available`.
.. seealso::
For more information on how to use this operator, take a look at the guide:
:ref:`howto/operator:RedshiftPauseClusterOperator`
:param cluster_identifier: id of the AWS Redshift Cluster
:param aws_conn_id: The Airflow connection used for AWS credentials.
If this is None or empty then the default boto3 behaviour is used. If
running Airflow in a distributed manner and aws_conn_id is None or
empty, then default boto3 configuration would be used (and must be
maintained on each worker node).
:param wait_for_completion: If True, waits for the cluster to be paused. (default: False)
:param deferrable: Run operator in the deferrable mode
:param poll_interval: Time (in seconds) to wait between two consecutive calls to check cluster state
:param max_attempts: Maximum number of attempts to poll the cluster
"""
[docs] template_fields: Sequence[str] = ("cluster_identifier",)
def __init__(
self,
*,
cluster_identifier: str,
aws_conn_id: str | None = "aws_default",
wait_for_completion: bool = False,
deferrable: bool = conf.getboolean("operators", "default_deferrable", fallback=False),
poll_interval: int = 30,
max_attempts: int = 30,
**kwargs,
):
super().__init__(**kwargs)
self.cluster_identifier = cluster_identifier
self.aws_conn_id = aws_conn_id
self.wait_for_completion = wait_for_completion
self.deferrable = deferrable
self.max_attempts = max_attempts
self.poll_interval = poll_interval
# These parameters are used to address an issue with the boto3 API where the API
# prematurely reports the cluster as available to receive requests. This causes the cluster
# to reject initial attempts to pause the cluster despite reporting the correct state.
self._remaining_attempts = 10
self._attempt_interval = 15
[docs] def execute(self, context: Context):
redshift_hook = RedshiftHook(aws_conn_id=self.aws_conn_id)
while self._remaining_attempts:
try:
redshift_hook.get_conn().pause_cluster(ClusterIdentifier=self.cluster_identifier)
break
except redshift_hook.get_conn().exceptions.InvalidClusterStateFault as error:
self._remaining_attempts -= 1
if self._remaining_attempts:
self.log.error(
"Unable to pause cluster. %d attempts remaining.", self._remaining_attempts
)
time.sleep(self._attempt_interval)
else:
raise error
if self.wait_for_completion:
if self.deferrable:
cluster_state = redshift_hook.cluster_status(cluster_identifier=self.cluster_identifier)
if cluster_state == "paused":
self.log.info("Paused cluster successfully")
elif cluster_state == "deleting":
raise AirflowException(
f"Unable to pause cluster since cluster is currently in status: {cluster_state}"
)
else:
self.defer(
trigger=RedshiftPauseClusterTrigger(
cluster_identifier=self.cluster_identifier,
waiter_delay=self.poll_interval,
waiter_max_attempts=self.max_attempts,
aws_conn_id=self.aws_conn_id,
),
method_name="execute_complete",
# timeout is set to ensure that if a trigger dies, the timeout does not restart
# 60 seconds is added to allow the trigger to exit gracefully (i.e. yield TriggerEvent)
timeout=timedelta(seconds=self.max_attempts * self.poll_interval + 60),
)
else:
waiter = redshift_hook.get_waiter("cluster_paused")
waiter.wait(
ClusterIdentifier=self.cluster_identifier,
WaiterConfig=prune_dict(
{
"Delay": self.poll_interval,
"MaxAttempts": self.max_attempts,
}
),
)
[docs] def execute_complete(self, context: Context, event: dict[str, Any] | None = None) -> None:
event = validate_execute_complete_event(event)
if event["status"] != "success":
raise AirflowException(f"Error pausing cluster: {event}")
self.log.info("Paused cluster successfully")
[docs]class RedshiftDeleteClusterOperator(BaseOperator):
"""
Delete an AWS Redshift cluster.
.. seealso::
For more information on how to use this operator, take a look at the guide:
:ref:`howto/operator:RedshiftDeleteClusterOperator`
:param cluster_identifier: unique identifier of a cluster
:param skip_final_cluster_snapshot: determines cluster snapshot creation
:param final_cluster_snapshot_identifier: name of final cluster snapshot
:param wait_for_completion: Whether wait for cluster deletion or not
The default value is ``True``
:param aws_conn_id: The Airflow connection used for AWS credentials.
If this is None or empty then the default boto3 behaviour is used. If
running Airflow in a distributed manner and aws_conn_id is None or
empty, then default boto3 configuration would be used (and must be
maintained on each worker node).
:param poll_interval: Time (in seconds) to wait between two consecutive calls to check cluster state
:param deferrable: Run operator in the deferrable mode.
:param max_attempts: (Deferrable mode only) The maximum number of attempts to be made
"""
[docs] template_fields: Sequence[str] = ("cluster_identifier",)
def __init__(
self,
*,
cluster_identifier: str,
skip_final_cluster_snapshot: bool = True,
final_cluster_snapshot_identifier: str | None = None,
wait_for_completion: bool = True,
aws_conn_id: str | None = "aws_default",
poll_interval: int = 30,
deferrable: bool = conf.getboolean("operators", "default_deferrable", fallback=False),
max_attempts: int = 30,
**kwargs,
):
super().__init__(**kwargs)
self.cluster_identifier = cluster_identifier
self.skip_final_cluster_snapshot = skip_final_cluster_snapshot
self.final_cluster_snapshot_identifier = final_cluster_snapshot_identifier
self.wait_for_completion = wait_for_completion
self.poll_interval = poll_interval
# These parameters are added to keep trying if there is a running operation in the cluster
# If there is a running operation in the cluster while trying to delete it, a InvalidClusterStateFault
# is thrown. In such case, retrying
self._attempts = 10
self._attempt_interval = 15
self.redshift_hook = RedshiftHook(aws_conn_id=aws_conn_id)
self.aws_conn_id = aws_conn_id
self.deferrable = deferrable
self.max_attempts = max_attempts
[docs] def execute(self, context: Context):
while self._attempts:
try:
self.redshift_hook.delete_cluster(
cluster_identifier=self.cluster_identifier,
skip_final_cluster_snapshot=self.skip_final_cluster_snapshot,
final_cluster_snapshot_identifier=self.final_cluster_snapshot_identifier,
)
break
except self.redshift_hook.get_conn().exceptions.InvalidClusterStateFault:
self._attempts -= 1
if self._attempts:
self.log.error("Unable to delete cluster. %d attempts remaining.", self._attempts)
time.sleep(self._attempt_interval)
else:
raise
if self.deferrable:
cluster_state = self.redshift_hook.cluster_status(cluster_identifier=self.cluster_identifier)
if cluster_state == "cluster_not_found":
self.log.info("Cluster deleted successfully")
elif cluster_state in ("creating", "modifying"):
raise AirflowException(
f"Unable to delete cluster since cluster is currently in status: {cluster_state}"
)
else:
self.defer(
timeout=timedelta(seconds=self.max_attempts * self.poll_interval + 60),
trigger=RedshiftDeleteClusterTrigger(
cluster_identifier=self.cluster_identifier,
waiter_delay=self.poll_interval,
waiter_max_attempts=self.max_attempts,
aws_conn_id=self.aws_conn_id,
),
method_name="execute_complete",
)
elif self.wait_for_completion:
waiter = self.redshift_hook.get_conn().get_waiter("cluster_deleted")
waiter.wait(
ClusterIdentifier=self.cluster_identifier,
WaiterConfig={"Delay": self.poll_interval, "MaxAttempts": self.max_attempts},
)
[docs] def execute_complete(self, context: Context, event: dict[str, Any] | None = None) -> None:
event = validate_execute_complete_event(event)
if event["status"] != "success":
raise AirflowException(f"Error deleting cluster: {event}")
self.log.info("Cluster deleted successfully")