Complete the airflow survey & get a free airflow 3 certification!

Source code for airflow.providers.amazon.aws.operators.ssm

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations

from collections.abc import Sequence
from typing import TYPE_CHECKING, Any

from airflow.configuration import conf
from airflow.providers.amazon.aws.hooks.ssm import SsmHook
from airflow.providers.amazon.aws.operators.base_aws import AwsBaseOperator
from airflow.providers.amazon.aws.triggers.ssm import SsmRunCommandTrigger
from airflow.providers.amazon.aws.utils import validate_execute_complete_event
from airflow.providers.amazon.aws.utils.mixins import aws_template_fields

if TYPE_CHECKING:
    from airflow.utils.context import Context


[docs] class SsmRunCommandOperator(AwsBaseOperator[SsmHook]): """ Executes the SSM Run Command to perform actions on managed instances. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:SsmRunCommandOperator` :param document_name: The name of the Amazon Web Services Systems Manager document (SSM document) to run. :param run_command_kwargs: Optional parameters to pass to the send_command API. :param wait_for_completion: Whether to wait for cluster to stop. (default: True) :param waiter_delay: Time in seconds to wait between status checks. (default: 120) :param waiter_max_attempts: Maximum number of attempts to check for job completion. (default: 75) :param deferrable: If True, the operator will wait asynchronously for the cluster to stop. This implies waiting for completion. This mode requires aiobotocore module to be installed. (default: False) :param aws_conn_id: The Airflow connection used for AWS credentials. If this is ``None`` or empty then the default boto3 behaviour is used. If running Airflow in a distributed manner and aws_conn_id is None or empty, then default boto3 configuration would be used (and must be maintained on each worker node). :param region_name: AWS region_name. If not specified then the default boto3 behaviour is used. :param verify: Whether or not to verify SSL certificates. See: https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html :param botocore_config: Configuration dictionary (key-values) for botocore client. See: https://botocore.amazonaws.com/v1/documentation/api/latest/reference/config.html """
[docs] aws_hook_class = SsmHook
[docs] template_fields: Sequence[str] = aws_template_fields( "document_name", "run_command_kwargs", )
def __init__( self, *, document_name: str, run_command_kwargs: dict[str, Any] | None = None, wait_for_completion: bool = True, waiter_delay: int = 120, waiter_max_attempts: int = 75, deferrable: bool = conf.getboolean("operators", "default_deferrable", fallback=False), **kwargs, ): super().__init__(**kwargs)
[docs] self.wait_for_completion = wait_for_completion
[docs] self.waiter_delay = waiter_delay
[docs] self.waiter_max_attempts = waiter_max_attempts
[docs] self.deferrable = deferrable
[docs] self.document_name = document_name
[docs] self.run_command_kwargs = run_command_kwargs or {}
[docs] def execute_complete(self, context: Context, event: dict[str, Any] | None = None) -> str: event = validate_execute_complete_event(event) if event["status"] != "success": raise RuntimeError(f"Error while running run command: {event}") self.log.info("SSM run command `%s` completed.", event["command_id"]) return event["command_id"]
[docs] def execute(self, context: Context): response = self.hook.conn.send_command( DocumentName=self.document_name, **self.run_command_kwargs, ) command_id = response["Command"]["CommandId"] task_description = f"SSM run command {command_id} to complete." if self.deferrable: self.log.info("Deferring for %s", task_description) self.defer( trigger=SsmRunCommandTrigger( command_id=command_id, waiter_delay=self.waiter_delay, waiter_max_attempts=self.waiter_max_attempts, aws_conn_id=self.aws_conn_id, region_name=self.region_name, verify=self.verify, botocore_config=self.botocore_config, ), method_name="execute_complete", ) elif self.wait_for_completion: self.log.info("Waiting for %s", task_description) waiter = self.hook.get_waiter("command_executed") instance_ids = response["Command"]["InstanceIds"] for instance_id in instance_ids: waiter.wait( CommandId=command_id, InstanceId=instance_id, WaiterConfig={ "Delay": self.waiter_delay, "MaxAttempts": self.waiter_max_attempts, }, ) return command_id
[docs] class SsmGetCommandInvocationOperator(AwsBaseOperator[SsmHook]): """ Retrieves the output and execution details of an SSM command invocation. This operator allows you to fetch the standard output, standard error, execution status, and other details from SSM commands. It can be used to retrieve output from commands executed by SsmRunCommandOperator in previous tasks, or from commands executed outside of Airflow entirely. The operator returns structured data including stdout, stderr, execution times, and status information for each instance that executed the command. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:SsmGetCommandInvocationOperator` :param command_id: The ID of the SSM command to retrieve output for. :param instance_id: The ID of the specific instance to retrieve output for. If not provided, retrieves output from all instances that executed the command. :param aws_conn_id: The Airflow connection used for AWS credentials. If this is ``None`` or empty then the default boto3 behaviour is used. If running Airflow in a distributed manner and aws_conn_id is None or empty, then default boto3 configuration would be used (and must be maintained on each worker node). :param region_name: AWS region_name. If not specified then the default boto3 behaviour is used. :param verify: Whether or not to verify SSL certificates. See: https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html :param botocore_config: Configuration dictionary (key-values) for botocore client. See: https://botocore.amazonaws.com/v1/documentation/api/latest/reference/config.html """
[docs] aws_hook_class = SsmHook
[docs] template_fields: Sequence[str] = aws_template_fields( "command_id", "instance_id", )
def __init__( self, *, command_id: str, instance_id: str | None = None, **kwargs, ): super().__init__(**kwargs)
[docs] self.command_id = command_id
[docs] self.instance_id = instance_id
[docs] def execute(self, context: Context) -> dict[str, Any]: """Execute the operator to retrieve command invocation output.""" if self.instance_id: self.log.info( "Retrieving output for command %s on instance %s", self.command_id, self.instance_id, ) invocations = [{"InstanceId": self.instance_id}] else: self.log.info("Retrieving output for command %s from all instances", self.command_id) response = self.hook.list_command_invocations(self.command_id) invocations = response.get("CommandInvocations", []) output_data: dict[str, Any] = {"command_id": self.command_id, "invocations": []} for invocation in invocations: instance_id = invocation["InstanceId"] try: invocation_details = self.hook.get_command_invocation(self.command_id, instance_id) output_data["invocations"].append( { "instance_id": instance_id, "status": invocation_details.get("Status", ""), "response_code": invocation_details.get("ResponseCode", ""), "standard_output": invocation_details.get("StandardOutputContent", ""), "standard_error": invocation_details.get("StandardErrorContent", ""), "execution_start_time": invocation_details.get("ExecutionStartDateTime", ""), "execution_end_time": invocation_details.get("ExecutionEndDateTime", ""), "document_name": invocation_details.get("DocumentName", ""), "comment": invocation_details.get("Comment", ""), } ) except Exception as e: self.log.warning("Failed to get output for instance %s: %s", instance_id, e) output_data["invocations"].append({"instance_id": instance_id, "error": str(e)}) return output_data

Was this entry helpful?