Source code for airflow.providers.amazon.aws.sensors.glue

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations

from collections.abc import Sequence
from functools import cached_property
from typing import TYPE_CHECKING, Any

from airflow.configuration import conf
from airflow.exceptions import AirflowException
from airflow.providers.amazon.aws.hooks.glue import GlueDataQualityHook, GlueJobHook
from airflow.providers.amazon.aws.sensors.base_aws import AwsBaseSensor
from airflow.providers.amazon.aws.triggers.glue import (
    GlueDataQualityRuleRecommendationRunCompleteTrigger,
    GlueDataQualityRuleSetEvaluationRunCompleteTrigger,
)
from airflow.providers.amazon.aws.utils import validate_execute_complete_event
from airflow.providers.amazon.aws.utils.mixins import aws_template_fields
from airflow.sensors.base import BaseSensorOperator

if TYPE_CHECKING:
    from airflow.utils.context import Context


[docs]class GlueJobSensor(BaseSensorOperator): """ Waits for an AWS Glue Job to reach any of the status below. 'FAILED', 'STOPPED', 'SUCCEEDED' .. seealso:: For more information on how to use this sensor, take a look at the guide: :ref:`howto/sensor:GlueJobSensor` :param job_name: The AWS Glue Job unique name :param run_id: The AWS Glue current running job identifier :param verbose: If True, more Glue Job Run logs show in the Airflow Task Logs. (default: False) """
[docs] template_fields: Sequence[str] = ("job_name", "run_id")
def __init__( self, *, job_name: str, run_id: str, verbose: bool = False, aws_conn_id: str | None = "aws_default", **kwargs, ): super().__init__(**kwargs) self.job_name = job_name self.run_id = run_id self.verbose = verbose self.aws_conn_id = aws_conn_id self.success_states: list[str] = ["SUCCEEDED"] self.errored_states: list[str] = ["FAILED", "STOPPED", "TIMEOUT"] self.next_log_tokens = GlueJobHook.LogContinuationTokens() @cached_property
[docs] def hook(self): return GlueJobHook(aws_conn_id=self.aws_conn_id)
[docs] def poke(self, context: Context): self.log.info("Poking for job run status :for Glue Job %s and ID %s", self.job_name, self.run_id) job_state = self.hook.get_job_state(job_name=self.job_name, run_id=self.run_id) try: if job_state in self.success_states: self.log.info("Exiting Job %s Run State: %s", self.run_id, job_state) return True elif job_state in self.errored_states: job_error_message = "Exiting Job %s Run State: %s", self.run_id, job_state self.log.info(job_error_message) raise AirflowException(job_error_message) else: return False finally: if self.verbose: self.hook.print_job_logs( job_name=self.job_name, run_id=self.run_id, continuation_tokens=self.next_log_tokens, )
[docs]class GlueDataQualityRuleSetEvaluationRunSensor(AwsBaseSensor[GlueDataQualityHook]): """ Waits for an AWS Glue data quality ruleset evaluation run to reach any of the status below. 'FAILED', 'STOPPED', 'STOPPING', 'TIMEOUT', 'SUCCEEDED' .. seealso:: For more information on how to use this sensor, take a look at the guide: :ref:`howto/sensor:GlueDataQualityRuleSetEvaluationRunSensor` :param evaluation_run_id: The AWS Glue data quality ruleset evaluation run identifier. :param verify_result_status: Validate all the ruleset rules evaluation run results, If any of the rule status is Fail or Error then an exception is thrown. (default: True) :param show_results: Displays all the ruleset rules evaluation run results. (default: True) :param deferrable: If True, the sensor will operate in deferrable mode. This mode requires aiobotocore module to be installed. (default: False, but can be overridden in config file by setting default_deferrable to True) :param poke_interval: Polling period in seconds to check for the status of the job. (default: 120) :param max_retries: Number of times before returning the current state. (default: 60) :param aws_conn_id: The Airflow connection used for AWS credentials. If this is ``None`` or empty then the default boto3 behaviour is used. If running Airflow in a distributed manner and aws_conn_id is None or empty, then default boto3 configuration would be used (and must be maintained on each worker node). :param region_name: AWS region_name. If not specified then the default boto3 behaviour is used. :param verify: Whether to verify SSL certificates. See: https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html :param botocore_config: Configuration dictionary (key-values) for botocore client. See: https://botocore.amazonaws.com/v1/documentation/api/latest/reference/config.html """
[docs] SUCCESS_STATES = ("SUCCEEDED",)
[docs] FAILURE_STATES = ("FAILED", "STOPPED", "STOPPING", "TIMEOUT")
[docs] aws_hook_class = GlueDataQualityHook
[docs] template_fields: Sequence[str] = aws_template_fields("evaluation_run_id")
def __init__( self, *, evaluation_run_id: str, show_results: bool = True, verify_result_status: bool = True, deferrable: bool = conf.getboolean("operators", "default_deferrable", fallback=False), poke_interval: int = 120, max_retries: int = 60, aws_conn_id: str | None = "aws_default", **kwargs, ): super().__init__(**kwargs) self.evaluation_run_id = evaluation_run_id self.show_results = show_results self.verify_result_status = verify_result_status self.aws_conn_id = aws_conn_id self.max_retries = max_retries self.poke_interval = poke_interval self.deferrable = deferrable
[docs] def execute(self, context: Context) -> Any: if self.deferrable: self.defer( trigger=GlueDataQualityRuleSetEvaluationRunCompleteTrigger( evaluation_run_id=self.evaluation_run_id, waiter_delay=int(self.poke_interval), waiter_max_attempts=self.max_retries, aws_conn_id=self.aws_conn_id, ), method_name="execute_complete", ) else: super().execute(context=context)
[docs] def execute_complete(self, context: Context, event: dict[str, Any] | None = None) -> None: event = validate_execute_complete_event(event) if event["status"] != "success": message = f"Error: AWS Glue data quality ruleset evaluation run: {event}" raise AirflowException(message) self.hook.validate_evaluation_run_results( evaluation_run_id=event["evaluation_run_id"], show_results=self.show_results, verify_result_status=self.verify_result_status, ) self.log.info("AWS Glue data quality ruleset evaluation run completed.")
[docs] def poke(self, context: Context): self.log.info( "Poking for AWS Glue data quality ruleset evaluation run RunId: %s", self.evaluation_run_id ) response = self.hook.conn.get_data_quality_ruleset_evaluation_run(RunId=self.evaluation_run_id) status = response.get("Status") if status in self.SUCCESS_STATES: self.hook.validate_evaluation_run_results( evaluation_run_id=self.evaluation_run_id, show_results=self.show_results, verify_result_status=self.verify_result_status, ) self.log.info( "AWS Glue data quality ruleset evaluation run completed RunId: %s Run State: %s", self.evaluation_run_id, response["Status"], ) return True elif status in self.FAILURE_STATES: job_error_message = ( f"Error: AWS Glue data quality ruleset evaluation run RunId: {self.evaluation_run_id} Run " f"Status: {status}" f": {response.get('ErrorString')}" ) self.log.info(job_error_message) raise AirflowException(job_error_message) else: return False
[docs]class GlueDataQualityRuleRecommendationRunSensor(AwsBaseSensor[GlueDataQualityHook]): """ Waits for an AWS Glue data quality recommendation run to reach any of the status below. 'FAILED', 'STOPPED', 'STOPPING', 'TIMEOUT', 'SUCCEEDED' .. seealso:: For more information on how to use this sensor, take a look at the guide: :ref:`howto/sensor:GlueDataQualityRuleRecommendationRunSensor` :param recommendation_run_id: The AWS Glue data quality rule recommendation run identifier. :param show_results: Displays the recommended ruleset (a set of rules), when recommendation run completes. (default: True) :param deferrable: If True, the sensor will operate in deferrable mode. This mode requires aiobotocore module to be installed. (default: False, but can be overridden in config file by setting default_deferrable to True) :param poke_interval: Polling period in seconds to check for the status of the job. (default: 120) :param max_retries: Number of times before returning the current state. (default: 60) :param aws_conn_id: The Airflow connection used for AWS credentials. If this is ``None`` or empty then the default boto3 behaviour is used. If running Airflow in a distributed manner and aws_conn_id is None or empty, then default boto3 configuration would be used (and must be maintained on each worker node). :param region_name: AWS region_name. If not specified then the default boto3 behaviour is used. :param verify: Whether to verify SSL certificates. See: https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html :param botocore_config: Configuration dictionary (key-values) for botocore client. See: https://botocore.amazonaws.com/v1/documentation/api/latest/reference/config.html """
[docs] SUCCESS_STATES = ("SUCCEEDED",)
[docs] FAILURE_STATES = ("FAILED", "STOPPED", "STOPPING", "TIMEOUT")
[docs] aws_hook_class = GlueDataQualityHook
[docs] template_fields: Sequence[str] = aws_template_fields("recommendation_run_id")
def __init__( self, *, recommendation_run_id: str, show_results: bool = True, deferrable: bool = conf.getboolean("operators", "default_deferrable", fallback=False), poke_interval: int = 120, max_retries: int = 60, aws_conn_id: str | None = "aws_default", **kwargs, ): super().__init__(**kwargs) self.recommendation_run_id = recommendation_run_id self.show_results = show_results self.deferrable = deferrable self.poke_interval = poke_interval self.max_retries = max_retries self.aws_conn_id = aws_conn_id
[docs] def execute(self, context: Context) -> Any: if self.deferrable: self.defer( trigger=GlueDataQualityRuleRecommendationRunCompleteTrigger( recommendation_run_id=self.recommendation_run_id, waiter_delay=int(self.poke_interval), waiter_max_attempts=self.max_retries, aws_conn_id=self.aws_conn_id, ), method_name="execute_complete", ) else: super().execute(context=context)
[docs] def execute_complete(self, context: Context, event: dict[str, Any] | None = None) -> None: event = validate_execute_complete_event(event) if event["status"] != "success": message = f"Error: AWS Glue data quality recommendation run: {event}" raise AirflowException(message) if self.show_results: self.hook.log_recommendation_results(run_id=self.recommendation_run_id) self.log.info("AWS Glue data quality recommendation run completed.")
[docs] def poke(self, context: Context) -> bool: self.log.info( "Poking for AWS Glue data quality recommendation run RunId: %s", self.recommendation_run_id ) response = self.hook.conn.get_data_quality_rule_recommendation_run(RunId=self.recommendation_run_id) status = response.get("Status") if status in self.SUCCESS_STATES: if self.show_results: self.hook.log_recommendation_results(run_id=self.recommendation_run_id) self.log.info( "AWS Glue data quality recommendation run completed RunId: %s Run State: %s", self.recommendation_run_id, response["Status"], ) return True elif status in self.FAILURE_STATES: job_error_message = ( f"Error: AWS Glue data quality recommendation run RunId: {self.recommendation_run_id} Run " f"Status: {status}" f": {response.get('ErrorString')}" ) self.log.info(job_error_message) raise AirflowException(job_error_message) else: return False

Was this entry helpful?