Source code for airflow.providers.amazon.aws.sensors.kinesis_analytics

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations

from collections.abc import Sequence
from typing import TYPE_CHECKING, Any

from airflow.configuration import conf
from airflow.exceptions import AirflowException
from airflow.providers.amazon.aws.hooks.kinesis_analytics import KinesisAnalyticsV2Hook
from airflow.providers.amazon.aws.sensors.base_aws import AwsBaseSensor
from airflow.providers.amazon.aws.triggers.kinesis_analytics import (
    KinesisAnalyticsV2ApplicationOperationCompleteTrigger,
)
from airflow.providers.amazon.aws.utils.mixins import aws_template_fields

if TYPE_CHECKING:
    from airflow.utils.context import Context


[docs]class KinesisAnalyticsV2BaseSensor(AwsBaseSensor[KinesisAnalyticsV2Hook]): """ General sensor behaviour for AWS Managed Service for Apache Flink. Subclasses must set the following fields: - ``INTERMEDIATE_STATES`` - ``FAILURE_STATES`` - ``SUCCESS_STATES`` - ``FAILURE_MESSAGE`` - ``SUCCESS_MESSAGE`` :param application_name: Application name. :param deferrable: If True, the sensor will operate in deferrable mode. This mode requires aiobotocore module to be installed. (default: False, but can be overridden in config file by setting default_deferrable to True) """
[docs] aws_hook_class = KinesisAnalyticsV2Hook
[docs] ui_color = "#66c3ff"
[docs] INTERMEDIATE_STATES: tuple[str, ...] = ()
[docs] FAILURE_STATES: tuple[str, ...] = ()
[docs] SUCCESS_STATES: tuple[str, ...] = ()
[docs] FAILURE_MESSAGE = ""
[docs] SUCCESS_MESSAGE = ""
def __init__( self, application_name: str, deferrable: bool = conf.getboolean("operators", "default_deferrable", fallback=False), **kwargs: Any, ): super().__init__(**kwargs) self.application_name = application_name self.deferrable = deferrable
[docs] def poke(self, context: Context, **kwargs) -> bool: status = self.hook.conn.describe_application(ApplicationName=self.application_name)[ "ApplicationDetail" ]["ApplicationStatus"] self.log.info( "Poking for AWS Managed Service for Apache Flink application: %s status: %s", self.application_name, status, ) if status in self.FAILURE_STATES: raise AirflowException(self.FAILURE_MESSAGE) if status in self.SUCCESS_STATES: self.log.info( "%s `%s`.", self.SUCCESS_MESSAGE, self.application_name, ) return True return False
[docs]class KinesisAnalyticsV2StartApplicationCompletedSensor(KinesisAnalyticsV2BaseSensor): """ Waits for AWS Managed Service for Apache Flink application to start. .. seealso:: For more information on how to use this sensor, take a look at the guide: :ref:`howto/sensor:KinesisAnalyticsV2StartApplicationCompletedSensor` :param application_name: Application name. :param deferrable: If True, the sensor will operate in deferrable mode. This mode requires aiobotocore module to be installed. (default: False, but can be overridden in config file by setting default_deferrable to True) :param poke_interval: Polling period in seconds to check for the status of the job. (default: 120) :param max_retries: Number of times before returning the current state. (default: 75) :param aws_conn_id: The Airflow connection used for AWS credentials. If this is ``None`` or empty then the default boto3 behaviour is used. If running Airflow in a distributed manner and aws_conn_id is None or empty, then default boto3 configuration would be used (and must be maintained on each worker node). :param region_name: AWS region_name. If not specified then the default boto3 behaviour is used. :param verify: Whether to verify SSL certificates. See: https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html :param botocore_config: Configuration dictionary (key-values) for botocore client. See: https://botocore.amazonaws.com/v1/documentation/api/latest/reference/config.html """
[docs] INTERMEDIATE_STATES: tuple[str, ...] = KinesisAnalyticsV2Hook.APPLICATION_START_INTERMEDIATE_STATES
[docs] FAILURE_STATES: tuple[str, ...] = KinesisAnalyticsV2Hook.APPLICATION_START_FAILURE_STATES
[docs] SUCCESS_STATES: tuple[str, ...] = KinesisAnalyticsV2Hook.APPLICATION_START_SUCCESS_STATES
[docs] FAILURE_MESSAGE = "AWS Managed Service for Apache Flink application start failed."
[docs] SUCCESS_MESSAGE = "AWS Managed Service for Apache Flink application started successfully"
[docs] template_fields: Sequence[str] = aws_template_fields("application_name")
def __init__( self, *, application_name: str, max_retries: int = 75, poke_interval: int = 120, **kwargs: Any, ) -> None: super().__init__(application_name=application_name, **kwargs) self.application_name = application_name self.max_retries = max_retries self.poke_interval = poke_interval
[docs] def execute(self, context: Context) -> Any: if self.deferrable: self.defer( trigger=KinesisAnalyticsV2ApplicationOperationCompleteTrigger( application_name=self.application_name, waiter_name="application_start_complete", aws_conn_id=self.aws_conn_id, waiter_delay=int(self.poke_interval), waiter_max_attempts=self.max_retries, region_name=self.region_name, verify=self.verify, botocore_config=self.botocore_config, ), method_name="poke", ) else: super().execute(context=context)
[docs]class KinesisAnalyticsV2StopApplicationCompletedSensor(KinesisAnalyticsV2BaseSensor): """ Waits for AWS Managed Service for Apache Flink application to stop. .. seealso:: For more information on how to use this sensor, take a look at the guide: :ref:`howto/sensor:KinesisAnalyticsV2StopApplicationCompletedSensor` :param application_name: Application name. :param deferrable: If True, the sensor will operate in deferrable mode. This mode requires aiobotocore module to be installed. (default: False, but can be overridden in config file by setting default_deferrable to True) :param poke_interval: Polling period in seconds to check for the status of the job. (default: 120) :param max_retries: Number of times before returning the current state. (default: 75) :param aws_conn_id: The Airflow connection used for AWS credentials. If this is ``None`` or empty then the default boto3 behaviour is used. If running Airflow in a distributed manner and aws_conn_id is None or empty, then default boto3 configuration would be used (and must be maintained on each worker node). :param region_name: AWS region_name. If not specified then the default boto3 behaviour is used. :param verify: Whether to verify SSL certificates. See: https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html :param botocore_config: Configuration dictionary (key-values) for botocore client. See: https://botocore.amazonaws.com/v1/documentation/api/latest/reference/config.html """
[docs] INTERMEDIATE_STATES: tuple[str, ...] = KinesisAnalyticsV2Hook.APPLICATION_STOP_INTERMEDIATE_STATES
[docs] FAILURE_STATES: tuple[str, ...] = KinesisAnalyticsV2Hook.APPLICATION_STOP_FAILURE_STATES
[docs] SUCCESS_STATES: tuple[str, ...] = KinesisAnalyticsV2Hook.APPLICATION_STOP_SUCCESS_STATES
[docs] FAILURE_MESSAGE = "AWS Managed Service for Apache Flink application stop failed."
[docs] SUCCESS_MESSAGE = "AWS Managed Service for Apache Flink application stopped successfully"
[docs] template_fields: Sequence[str] = aws_template_fields("application_name")
def __init__( self, *, application_name: str, max_retries: int = 75, poke_interval: int = 120, **kwargs: Any, ) -> None: super().__init__(application_name=application_name, **kwargs) self.application_name = application_name self.max_retries = max_retries self.poke_interval = poke_interval
[docs] def execute(self, context: Context) -> Any: if self.deferrable: self.defer( trigger=KinesisAnalyticsV2ApplicationOperationCompleteTrigger( application_name=self.application_name, waiter_name="application_stop_complete", aws_conn_id=self.aws_conn_id, waiter_delay=int(self.poke_interval), waiter_max_attempts=self.max_retries, region_name=self.region_name, verify=self.verify, botocore_config=self.botocore_config, ), method_name="poke", ) else: super().execute(context=context)

Was this entry helpful?