Airflow Summit 2025 is coming October 07-09. Register now for early bird ticket!

Source code for tests.system.amazon.aws.example_bedrock_batch_inference

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations

import json
import logging
from datetime import datetime
from tempfile import NamedTemporaryFile
from typing import TYPE_CHECKING

from botocore.exceptions import ClientError

from airflow.providers.amazon.aws.hooks.bedrock import BedrockHook
from airflow.providers.amazon.aws.hooks.s3 import S3Hook
from airflow.providers.amazon.aws.operators.bedrock import (
    BedrockBatchInferenceOperator,
    BedrockInvokeModelOperator,
)
from airflow.providers.amazon.aws.operators.s3 import (
    S3CreateBucketOperator,
    S3DeleteBucketOperator,
)
from airflow.providers.amazon.aws.sensors.bedrock import BedrockBatchInferenceSensor

from tests_common.test_utils.version_compat import AIRFLOW_V_3_0_PLUS

if TYPE_CHECKING:
    from airflow.decorators import task
    from airflow.models.baseoperator import chain
    from airflow.models.dag import DAG
else:
    if AIRFLOW_V_3_0_PLUS:
        from airflow.sdk import DAG, chain, task
    else:
        # Airflow 2.10 compat
        from airflow.decorators import task
        from airflow.models.baseoperator import chain
        from airflow.models.dag import DAG
from airflow.utils.trigger_rule import TriggerRule

from system.amazon.aws.utils import SystemTestContextBuilder

[docs] log = logging.getLogger(__name__)
# Externally fetched variables:
[docs] ROLE_ARN_KEY = "ROLE_ARN"
[docs] sys_test_context_task = SystemTestContextBuilder().add_variable(ROLE_ARN_KEY).build()
[docs] DAG_ID = "example_bedrock_batch_inference"
####################################################################### # NOTE: # Access to the following foundation model must be requested via # the Amazon Bedrock console and may take up to 24 hours to apply: #######################################################################
[docs] CLAUDE_MODEL_ID = "anthropic.claude-3-sonnet-20240229-v1:0"
[docs] ANTHROPIC_VERSION = "bedrock-2023-05-31"
# Batch inferences currently require a minimum of 100 prompts per batch.
[docs] MIN_NUM_PROMPTS = 300
[docs] PROMPT_TEMPLATE = "Even numbers are red. Odd numbers are blue. What color is {n}?"
@task
[docs] def generate_prompts(_env_id: str, _bucket: str, _key: str): """ Bedrock Batch Inference requires one or more jsonl-formatted files in an S3 bucket. The JSONL format requires one serialized json object per prompt per line. """ with NamedTemporaryFile(mode="w") as tmp_file: # Generate the required number of prompts. prompts = [ { "modelInput": { "anthropic_version": ANTHROPIC_VERSION, "max_tokens": 1000, "messages": [PROMPT_TEMPLATE.format(n=n)], }, } for n in range(MIN_NUM_PROMPTS) ] # Convert each prompt to serialized json, append a newline, and write that line to the temp file. tmp_file.writelines(json.dumps(prompt) + "\n" for prompt in prompts) # Upload the file to S3. S3Hook().conn.upload_file(tmp_file.name, _bucket, _key)
@task(trigger_rule=TriggerRule.ALL_DONE)
[docs] def stop_batch_inference(job_arn: str): log.info("Stopping Batch Inference Job.") try: BedrockHook().conn.stop_model_invocation_job(jobIdentifier=job_arn) except ClientError as e: # If the job has already completed, boto will raise a ValidationException. Consider that a successful result. if (e.response["Error"]["Code"] == "ValidationException") and ( "State was: Completed" in e.response["Error"]["Message"] ): pass
with DAG( dag_id=DAG_ID, schedule="@once", start_date=datetime(2021, 1, 1), tags={"example"}, catchup=False, ) as dag:
[docs] test_context = sys_test_context_task()
env_id = test_context["ENV_ID"] bucket_name = f"{env_id}-bedrock" input_data_s3_key = f"{env_id}/prompt_list.jsonl" input_uri = f"s3://{bucket_name}/{input_data_s3_key}" output_uri = f"s3://{bucket_name}/output/" job_name = f"batch-infer-{env_id}" # Test that this configuration works for a single prompt before trying the batch inferences. # [START howto_operator_invoke_claude_messages] invoke_claude_messages = BedrockInvokeModelOperator( task_id="invoke_claude_messages", model_id=CLAUDE_MODEL_ID, input_data={ "anthropic_version": "bedrock-2023-05-31", "max_tokens": 1000, "messages": [{"role": "user", "content": PROMPT_TEMPLATE.format(n=42)}], }, ) # [END howto_operator_invoke_claude_messages] create_bucket = S3CreateBucketOperator(task_id="create_bucket", bucket_name=bucket_name) # [START howto_operator_bedrock_batch_inference] batch_infer = BedrockBatchInferenceOperator( task_id="batch_infer", job_name=job_name, role_arn=test_context[ROLE_ARN_KEY], model_id=CLAUDE_MODEL_ID, input_uri=input_uri, output_uri=output_uri, ) # [END howto_operator_bedrock_batch_inference] batch_infer.wait_for_completion = False batch_infer.deferrable = False # [START howto_sensor_bedrock_batch_inference_scheduled] await_job_scheduled = BedrockBatchInferenceSensor( task_id="await_job_scheduled", job_arn=batch_infer.output, success_state=BedrockBatchInferenceSensor.SuccessState.SCHEDULED, ) # [END howto_sensor_bedrock_batch_inference_scheduled] stop_job = stop_batch_inference(batch_infer.output) delete_bucket = S3DeleteBucketOperator( task_id="delete_bucket", trigger_rule=TriggerRule.ALL_DONE, bucket_name=bucket_name, force_delete=True, ) chain( # TEST SETUP test_context, invoke_claude_messages, create_bucket, generate_prompts(env_id, bucket_name, input_data_s3_key), # TEST BODY batch_infer, await_job_scheduled, stop_job, # TEST TEARDOWN delete_bucket, ) from tests_common.test_utils.watcher import watcher # This test needs watcher in order to properly mark success/failure # when "tearDown" task with trigger rule is part of the DAG list(dag.tasks) >> watcher() from tests_common.test_utils.system_tests import get_test_run # noqa: E402 # Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs] test_run = get_test_run(dag)

Was this entry helpful?