Source code for tests.system.amazon.aws.example_comprehend_document_classifier

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations

from datetime import datetime

from airflow import DAG
from airflow.decorators import task, task_group
from airflow.models.baseoperator import chain
from airflow.providers.amazon.aws.hooks.comprehend import ComprehendHook
from airflow.providers.amazon.aws.operators.comprehend import (
    ComprehendCreateDocumentClassifierOperator,
)
from airflow.providers.amazon.aws.operators.s3 import (
    S3CopyObjectOperator,
    S3CreateBucketOperator,
    S3CreateObjectOperator,
    S3DeleteBucketOperator,
)
from airflow.providers.amazon.aws.sensors.comprehend import (
    ComprehendCreateDocumentClassifierCompletedSensor,
)
from airflow.utils.trigger_rule import TriggerRule

from providers.tests.system.amazon.aws.utils import SystemTestContextBuilder

[docs]ROLE_ARN_KEY = "ROLE_ARN"
[docs]BUCKET_NAME_KEY = "BUCKET_NAME"
[docs]BUCKET_KEY_DISCHARGE_KEY = "BUCKET_KEY_DISCHARGE"
[docs]BUCKET_KEY_DOCTORS_NOTES = "BUCKET_KEY_DOCTORS_NOTES"
[docs]sys_test_context_task = ( SystemTestContextBuilder() .add_variable(ROLE_ARN_KEY) .add_variable(BUCKET_NAME_KEY) .add_variable(BUCKET_KEY_DISCHARGE_KEY) .add_variable(BUCKET_KEY_DOCTORS_NOTES) .build() )
[docs]DAG_ID = "example_comprehend_document_classifier"
[docs]ANNOTATION_BUCKET_KEY = "training-labels/label.csv"
[docs]TRAINING_DATA_PREFIX = "training-docs"
# Annotations file won't allow headers # label,document name,page number
[docs]ANNOTATIONS = """DISCHARGE_SUMMARY,discharge-summary-0.pdf,1 DISCHARGE_SUMMARY,discharge-summary-1.pdf,1 DISCHARGE_SUMMARY,discharge-summary-2.pdf,1 DISCHARGE_SUMMARY,discharge-summary-3.pdf,1 DISCHARGE_SUMMARY,discharge-summary-4.pdf,1 DISCHARGE_SUMMARY,discharge-summary-5.pdf,1 DISCHARGE_SUMMARY,discharge-summary-6.pdf,1 DISCHARGE_SUMMARY,discharge-summary-7.pdf,1 DISCHARGE_SUMMARY,discharge-summary-8.pdf,1 DISCHARGE_SUMMARY,discharge-summary-9.pdf,1 DOCTOR_NOTES,doctors-notes-0.pdf,1 DOCTOR_NOTES,doctors-notes-1.pdf,1 DOCTOR_NOTES,doctors-notes-2.pdf,1 DOCTOR_NOTES,doctors-notes-3.pdf,1 DOCTOR_NOTES,doctors-notes-4.pdf,1 DOCTOR_NOTES,doctors-notes-5.pdf,1 DOCTOR_NOTES,doctors-notes-6.pdf,1 DOCTOR_NOTES,doctors-notes-7.pdf,1 DOCTOR_NOTES,doctors-notes-8.pdf,1 DOCTOR_NOTES,doctors-notes-9.pdf,1"""
@task_group
[docs]def document_classifier_workflow(): # [START howto_operator_create_document_classifier] create_document_classifier = ComprehendCreateDocumentClassifierOperator( task_id="create_document_classifier", document_classifier_name=classifier_name, input_data_config=input_data_configurations, output_data_config=output_data_configurations, mode="MULTI_CLASS", data_access_role_arn=test_context[ROLE_ARN_KEY], language_code="en", document_classifier_kwargs=document_classifier_kwargs, ) # [END howto_operator_create_document_classifier] create_document_classifier.wait_for_completion = False # [START howto_sensor_create_document_classifier] await_create_document_classifier = ComprehendCreateDocumentClassifierCompletedSensor( task_id="await_create_document_classifier", document_classifier_arn=create_document_classifier.output ) # [END howto_sensor_create_document_classifier] @task(trigger_rule=TriggerRule.ALL_DONE) def delete_classifier(document_classifier_arn: str): ComprehendHook().conn.delete_document_classifier(DocumentClassifierArn=document_classifier_arn) chain( create_document_classifier, await_create_document_classifier, delete_classifier(create_document_classifier.output), )
@task
[docs]def create_kwargs_discharge(): return [ { "source_bucket_key": str(test_context[BUCKET_KEY_DISCHARGE_KEY]), "dest_bucket_key": f"{TRAINING_DATA_PREFIX}/discharge-summary-{counter}.pdf", } for counter in range(10) ]
@task
[docs]def create_kwargs_doctors_notes(): return [ { "source_bucket_key": str(test_context[BUCKET_KEY_DOCTORS_NOTES]), "dest_bucket_key": f"{TRAINING_DATA_PREFIX}/doctors-notes-{counter}.pdf", } for counter in range(10) ]
with DAG( dag_id=DAG_ID, schedule="@once", start_date=datetime(2021, 1, 1), tags=["example"], catchup=False, ) as dag:
[docs] test_context = sys_test_context_task()
env_id = test_context["ENV_ID"] classifier_name = f"{env_id}-custom-document-classifier" bucket_name = f"{env_id}-comprehend-document-classifier" input_data_configurations = { "S3Uri": f"s3://{bucket_name}/{ANNOTATION_BUCKET_KEY}", "DataFormat": "COMPREHEND_CSV", "DocumentType": "SEMI_STRUCTURED_DOCUMENT", "Documents": {"S3Uri": f"s3://{bucket_name}/{TRAINING_DATA_PREFIX}/"}, "DocumentReaderConfig": { "DocumentReadAction": "TEXTRACT_DETECT_DOCUMENT_TEXT", "DocumentReadMode": "SERVICE_DEFAULT", }, } output_data_configurations = {"S3Uri": f"s3://{bucket_name}/output/"} document_classifier_kwargs = {"VersionName": "v1"} create_bucket = S3CreateBucketOperator( task_id="create_bucket", bucket_name=bucket_name, ) discharge_kwargs = create_kwargs_discharge() s3_copy_discharge_task = S3CopyObjectOperator.partial( task_id="s3_copy_discharge_task", source_bucket_name=test_context[BUCKET_NAME_KEY], dest_bucket_name=bucket_name, meta_data_directive="REPLACE", ).expand_kwargs(discharge_kwargs) doctors_notes_kwargs = create_kwargs_doctors_notes() s3_copy_doctors_notes_task = S3CopyObjectOperator.partial( task_id="s3_copy_doctors_notes_task", source_bucket_name=test_context[BUCKET_NAME_KEY], dest_bucket_name=bucket_name, meta_data_directive="REPLACE", ).expand_kwargs(doctors_notes_kwargs) upload_annotation_file = S3CreateObjectOperator( task_id="upload_annotation_file", s3_bucket=bucket_name, s3_key=ANNOTATION_BUCKET_KEY, data=ANNOTATIONS.encode("utf-8"), ) delete_bucket = S3DeleteBucketOperator( task_id="delete_bucket", trigger_rule=TriggerRule.ALL_DONE, bucket_name=bucket_name, force_delete=True, ) chain( test_context, create_bucket, s3_copy_discharge_task, s3_copy_doctors_notes_task, upload_annotation_file, # TEST BODY document_classifier_workflow(), # TEST TEARDOWN delete_bucket, ) from tests_common.test_utils.watcher import watcher # This test needs watcher in order to properly mark success/failure # when "tearDown" task with trigger rule is part of the DAG list(dag.tasks) >> watcher() from tests_common.test_utils.system_tests import get_test_run # noqa: E402 # Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)

Was this entry helpful?