Source code for airflow.providers.amazon.aws.operators.mwaa

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
"""This module contains AWS MWAA operators."""

from __future__ import annotations

from collections.abc import Sequence
from typing import TYPE_CHECKING, Any

from airflow.configuration import conf
from airflow.exceptions import AirflowException
from airflow.providers.amazon.aws.hooks.mwaa import MwaaHook
from airflow.providers.amazon.aws.operators.base_aws import AwsBaseOperator
from airflow.providers.amazon.aws.triggers.mwaa import MwaaDagRunCompletedTrigger
from airflow.providers.amazon.aws.utils import validate_execute_complete_event
from airflow.providers.amazon.aws.utils.mixins import aws_template_fields

if TYPE_CHECKING:
    from airflow.utils.context import Context


[docs] class MwaaTriggerDagRunOperator(AwsBaseOperator[MwaaHook]): """ Trigger a Dag Run for a Dag in an Amazon MWAA environment. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:MwaaTriggerDagRunOperator` :param env_name: The MWAA environment name (templated) :param trigger_dag_id: The ID of the DAG to be triggered (templated) :param trigger_run_id: The Run ID. This together with trigger_dag_id are a unique key. (templated) :param logical_date: The logical date (previously called execution date). This is the time or interval covered by this DAG run, according to the DAG definition. This together with trigger_dag_id are a unique key. (templated) :param data_interval_start: The beginning of the interval the DAG run covers :param data_interval_end: The end of the interval the DAG run covers :param conf: Additional configuration parameters. The value of this field can be set only when creating the object. (templated) :param note: Contains manually entered notes by the user about the DagRun. (templated) :param wait_for_completion: Whether to wait for DAG run to stop. (default: False) :param waiter_delay: Time in seconds to wait between status checks. (default: 120) :param waiter_max_attempts: Maximum number of attempts to check for DAG run completion. (default: 720) :param deferrable: If True, the operator will wait asynchronously for the DAG run to stop. This implies waiting for completion. This mode requires aiobotocore module to be installed. (default: False) :param aws_conn_id: The Airflow connection used for AWS credentials. If this is ``None`` or empty then the default boto3 behaviour is used. If running Airflow in a distributed manner and aws_conn_id is None or empty, then default boto3 configuration would be used (and must be maintained on each worker node). :param region_name: AWS region_name. If not specified then the default boto3 behaviour is used. :param verify: Whether or not to verify SSL certificates. See: https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html :param botocore_config: Configuration dictionary (key-values) for botocore client. See: https://botocore.amazonaws.com/v1/documentation/api/latest/reference/config.html """
[docs] aws_hook_class = MwaaHook
[docs] template_fields: Sequence[str] = aws_template_fields( "env_name", "trigger_dag_id", "trigger_run_id", "logical_date", "data_interval_start", "data_interval_end", "conf", "note", )
[docs] template_fields_renderers = {"conf": "json"}
def __init__( self, *, env_name: str, trigger_dag_id: str, trigger_run_id: str | None = None, logical_date: str | None = None, data_interval_start: str | None = None, data_interval_end: str | None = None, conf: dict | None = None, note: str | None = None, wait_for_completion: bool = False, waiter_delay: int = 60, waiter_max_attempts: int = 720, deferrable: bool = conf.getboolean("operators", "default_deferrable", fallback=False), **kwargs, ): super().__init__(**kwargs)
[docs] self.env_name = env_name
[docs] self.trigger_dag_id = trigger_dag_id
[docs] self.trigger_run_id = trigger_run_id
[docs] self.logical_date = logical_date
[docs] self.data_interval_start = data_interval_start
[docs] self.data_interval_end = data_interval_end
[docs] self.conf = conf if conf else {}
[docs] self.note = note
[docs] self.wait_for_completion = wait_for_completion
[docs] self.waiter_delay = waiter_delay
[docs] self.waiter_max_attempts = waiter_max_attempts
[docs] self.deferrable = deferrable
[docs] def execute_complete(self, context: Context, event: dict[str, Any] | None = None) -> dict: validated_event = validate_execute_complete_event(event) if validated_event["status"] != "success": raise AirflowException(f"DAG run failed: {validated_event}") dag_run_id = validated_event["dag_run_id"] self.log.info("DAG run %s of DAG %s completed", dag_run_id, self.trigger_dag_id) return self.hook.invoke_rest_api( env_name=self.env_name, path=f"/dags/{self.trigger_dag_id}/dagRuns/{dag_run_id}", method="GET" )
[docs] def execute(self, context: Context) -> dict: """ Trigger a Dag Run for the Dag in the Amazon MWAA environment. :param context: the Context object :return: dict with information about the Dag run For details of the returned dict, see :py:meth:`botocore.client.MWAA.invoke_rest_api` """ response = self.hook.invoke_rest_api( env_name=self.env_name, path=f"/dags/{self.trigger_dag_id}/dagRuns", method="POST", body={ "dag_run_id": self.trigger_run_id, "logical_date": self.logical_date, "data_interval_start": self.data_interval_start, "data_interval_end": self.data_interval_end, "conf": self.conf, "note": self.note, }, ) dag_run_id = response["RestApiResponse"]["dag_run_id"] self.log.info("DAG run %s of DAG %s created", dag_run_id, self.trigger_dag_id) task_description = f"DAG run {dag_run_id} of DAG {self.trigger_dag_id} to complete" if self.deferrable: self.log.info("Deferring for %s", task_description) self.defer( trigger=MwaaDagRunCompletedTrigger( external_env_name=self.env_name, external_dag_id=self.trigger_dag_id, external_dag_run_id=dag_run_id, waiter_delay=self.waiter_delay, waiter_max_attempts=self.waiter_max_attempts, aws_conn_id=self.aws_conn_id, ), method_name="execute_complete", ) elif self.wait_for_completion: self.log.info("Waiting for %s", task_description) api_kwargs = { "Name": self.env_name, "Path": f"/dags/{self.trigger_dag_id}/dagRuns/{dag_run_id}", "Method": "GET", } self.hook.get_waiter("mwaa_dag_run_complete").wait( **api_kwargs, WaiterConfig={"Delay": self.waiter_delay, "MaxAttempts": self.waiter_max_attempts}, ) return response

Was this entry helpful?