airflow.providers.amazon.aws.operators.mwaa

This module contains AWS MWAA operators.

Classes

MwaaTriggerDagRunOperator

Trigger a Dag Run for a Dag in an Amazon MWAA environment.

Module Contents

class airflow.providers.amazon.aws.operators.mwaa.MwaaTriggerDagRunOperator(*, env_name, trigger_dag_id, trigger_run_id=None, logical_date=None, data_interval_start=None, data_interval_end=None, conf=None, note=None, wait_for_completion=False, waiter_delay=60, waiter_max_attempts=720, deferrable=conf.getboolean('operators', 'default_deferrable', fallback=False), **kwargs)[source]

Bases: airflow.providers.amazon.aws.operators.base_aws.AwsBaseOperator[airflow.providers.amazon.aws.hooks.mwaa.MwaaHook]

Trigger a Dag Run for a Dag in an Amazon MWAA environment.

See also

For more information on how to use this operator, take a look at the guide: Trigger a DAG run in an Amazon MWAA environment

Parameters:
  • env_name (str) – The MWAA environment name (templated)

  • trigger_dag_id (str) – The ID of the DAG to be triggered (templated)

  • trigger_run_id (str | None) – The Run ID. This together with trigger_dag_id are a unique key. (templated)

  • logical_date (str | None) – The logical date (previously called execution date). This is the time or interval covered by this DAG run, according to the DAG definition. This together with trigger_dag_id are a unique key. (templated)

  • data_interval_start (str | None) – The beginning of the interval the DAG run covers

  • data_interval_end (str | None) – The end of the interval the DAG run covers

  • conf (dict | None) – Additional configuration parameters. The value of this field can be set only when creating the object. (templated)

  • note (str | None) – Contains manually entered notes by the user about the DagRun. (templated)

  • wait_for_completion (bool) – Whether to wait for DAG run to stop. (default: False)

  • waiter_delay (int) – Time in seconds to wait between status checks. (default: 120)

  • waiter_max_attempts (int) – Maximum number of attempts to check for DAG run completion. (default: 720)

  • deferrable (bool) – If True, the operator will wait asynchronously for the DAG run to stop. This implies waiting for completion. This mode requires aiobotocore module to be installed. (default: False)

  • aws_conn_id – The Airflow connection used for AWS credentials. If this is None or empty then the default boto3 behaviour is used. If running Airflow in a distributed manner and aws_conn_id is None or empty, then default boto3 configuration would be used (and must be maintained on each worker node).

  • region_name – AWS region_name. If not specified then the default boto3 behaviour is used.

  • verify – Whether or not to verify SSL certificates. See: https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html

  • botocore_config – Configuration dictionary (key-values) for botocore client. See: https://botocore.amazonaws.com/v1/documentation/api/latest/reference/config.html

aws_hook_class[source]
template_fields: collections.abc.Sequence[str][source]
template_fields_renderers[source]
env_name[source]
trigger_dag_id[source]
trigger_run_id = None[source]
logical_date = None[source]
data_interval_start = None[source]
data_interval_end = None[source]
conf[source]
note = None[source]
wait_for_completion = False[source]
waiter_delay = 60[source]
waiter_max_attempts = 720[source]
deferrable[source]
execute_complete(context, event=None)[source]
execute(context)[source]

Trigger a Dag Run for the Dag in the Amazon MWAA environment.

Parameters:

context (airflow.utils.context.Context) – the Context object

Returns:

dict with information about the Dag run For details of the returned dict, see botocore.client.MWAA.invoke_rest_api()

Return type:

dict

Was this entry helpful?